Heathkit

Educational
Systems

Macro-86
ASSEMBLY LANGUAGE

PROGRAMMING

Written by: Lawrence P. Larsen
Senior Educational Media Designer

HEATH COMPANY Model EC-1201
BENTON HARBOR, MICHIGAN 49022 595-3173-01

Copyright © 1984
Seventh printing—1986
Heath Company
Not affiliated with D.C. Heath, Inc.
Printed in the United States of America

Library of Congress Cataloging in Publication Data

Larsen, Lawrence P., 1944-
MACRO-86 assembly language programming,.

At head of title: Heathkit Zenith educational systems.

Includes index.

1. Intel 8086 (Microprocessor}—Programming. 2. Intel
8088 (Microprocessor)—Programming. 3. Assembler language
(Computer program language). 4. Microcomputers—Program-
ming. I. Title. IL. Series.
QA76.8.1292L37 1984 001.64'2 84-19295

ISBNO-67119-100-8

CONTENTS
INTRODUCTION ...ttt it ii i iiie it ety
COURSE DBIECTIVES . oovooin srouire sennss s e s 59 oo i 59
COURSE OUTELINE ;. s oo a6 e wie eds0as 008 869 o365 €3 &
UNIT 1 — Introduction to the Microcomputer

UNIT 2 — Introduction to Assembly Language
PrOgramiaing: o oos o6 aei 4% vew i 50ee5 a39ss and e us

UNIT 3 — Program Transfer Instructions
UNIT'#® - SUDIOUHIDEE « covon o5 o oo sws o sosos wames wimime i
UNIT 5 — New Addressing Modes
UNIT 6 — Expanding the Instruction Set
UNIT 7 — Segmented Memory and /O
UNIT 8 — Interrupts and Stringsccoiviviiennnn.

UNIT 9 — Code Macros and Other Interesting
MACRO:GE FPaBlOton), owws wmaas s v wemies

APPENDIX A — Number Systems Data
APPENDIX B — Machine Coding Instructions
APPENDIX C — Computer Arithmetic

APPENDIX D — Instruction Setcooiiiiiiinrnnnn

One last point about the 8088/8086 microprocessors. Because of the
rapidly growing family of microprocessor support devices, Intel Corpo-
ration is now using a different method of identifying different versions
of microprocessor “systems.” The name of the basic 8088 is now the
iAPX 88/10, while the basic 8086 is now the iAPX 86/10. However,
because the general public is most familiar with the older designations
8088 and 8086, we will continue to use those model numbers.

Course Prerequisites

Because of the basic nature of this course, there are only a few pre-
requisites. Before you begin this course, you should:

1. Have access to a Zenith 100-series microcomputer or an IBM PC,
and the appropriate operating system (MS-DOS, Z-DOS, or
PC-DOS).

2. Be familiar with the basic operation of the operating system (e.g.
directory usage, file transfer between disks, command line struc-
ture, etc.).

3. Have access to the system programs:

MASM.EXE (assembler).

LINK.EXE (object code linker).
EXE2BIN.EXE (EXE to binary converter).
CREF.EXE (cross reference facility).
LIB.EXE (library facility).

EDLIN.COM (file editor or equivalent).
DEBUG.COM (program/file debugger).

OARDOWp

4. Be familiar with the binary and hexadecimal number systems,
and computer math. If you have any questions in this area, a
quick overview is provided in Appendix A and Appendix C of
this course.

Vii

COURSE OBJECTIVES

When you complete this course, you will be able to:

1.

10,

11.

12.

13.

Describe the internal structure of the Intel 8088 microprocessor.

Describe how the physical address of instructions and data is
determined.

Structure a COM-type program.

Structure an EXE-type program.

Develop a program flowchart to define a problem.
Design program arrays, records, and structures.

Add, subtract, multiply, and divide signed and unsigned binary
numbers, and packed and unpacked decimal numbers.

Input and output data.

Develop interrupt service routines.

Design macro instructions.

Combine multiple program source listing files.
Link multiple program object files.

Structure the assembler listing format to match your printer.

Vil

COURSE OUTLINE

UNIT 1 — Introduction to the Microcomputer

A.

B.

Introduction

Unit Objectives
Microcomputer Overview
Microcomputer Hardware
Stored Program Concept

Bits, Bytes, Words, and Doublewords
Self-Review Questions

ol

The 8088 Microprocessor
1. Stripped Down MPU

a. The Execution Unit
b. The Bus Interface Unit

2. Execution Unit Registers
3. Self-Review Questions

Interfacing To Memory

1. RAMvs.ROM
2. Memory Segmentation

a. Locatingthe Segments
b. Address Determination
c. Segment Contents

d.

Determining the Physical Address of Each Segment
3. Self-Review Questions

Controlling The MPU

1. Accessing Memory (Fetch-Execute Sequence)

2. Machine Code Instruction
3. Self-Review Questions

Experiment — The Microcomputer’s MPU and Memory Struc-
ture

1. Introduction/Objectives
a. Demonstrate the 8088 MPU registers and show how
they can be manipulated by machine code
b. Introduce afew simple 8088 MPU Instructions
c. Demonstrate the difference between RAM and ROM
2. Procedure/Discussion
Unit 1 Examination

Examination Answers

Self-Review Answers

UNIT 2 — Introduction To Assembly Language Programming
A. Introduction
B. Unit Objectives
C. Assembly Process Overview

The Editor

The Assembler

The Linker

EXE-To-Binary Conversion
Self-Review Questions

il ol

D. Elements Of Microsoft Assembly Language

1. The Assembly Language Instruction Set
The Assembler Directive Statement
3. Assembler Directives

B

a. ORG
b. EQU
c. DB
d. DW
e. END

4. Self-Review Questions
E. Operand Typing

Immediate Operands
Register Operands
Memory Operands
Self-Review Questions

oo

F. Arithmetic Operators

1. Self-Review Questions

Program Segmentation

Logical Program Segmentation

Initializing the Segment Registers

1
2. Segmentation Assembler Directives
3
4

Self-Review Questions

Experiment — An Introduction to Assembly Language Pro-
gramming

1. Introduction/Objectives

e.

Demonstrate a typical COM program structure
Review the assembler directives introduced in the
Unit

Demonstrate three MPU addressing modes

Review the files generated in the assembly and link-
ing process

Demonstrate the assembler arithmetic operators

2. Procedure/Discussion

Unit 2 Examination

Examination Answers

Self-Review Answers

Xl

Xl

UNIT 3 — Program Transfer Instructions

A.

B.

Introduction

Unit Objectives

Flowcharting

1. Program Organization

2. Flowchart Symbols

3. Mathematical Symbols

4, Constructing the Flowchart
5. Self-Review Questions
Jumps

1. Unconditional Jump

3.

a. Direct Jumps
b. Indirect Jumps

Conditional Jumps
a. TheFlag Register
b. The Conditional Jump Instructions

c. Usingthe Conditional Jump

Self-Review Questions

Loops

i G2 B pa

Unconditional Loop
Conditional Loop
Loop Addressing
Self-Review Questions

Experiment — Program Transfer
1. Introduction/Objectives
a. Demonstrate program branching through the use of
conditional jumps and loops
b. Demonstrate the effect arithmetic operations have on
the Flag register
c. Demonstrate the flowcharting process
2. Procedure/Discussion
Unit 3 Examination

Examination Answers

Self-Review Answers

XIil

XV

UNIT 4 — Subroutines
A. Introduction
B. Unit Objectives
C. Subroutine Calls

1. The Problem
2. The Subroutine Solution
3. Self-Review Questions

The Stack

1. Structure
2. Addressing the Stack

a. PUSH Instructions
b. POP Instructions

3. Self-Review Questions
The Call and Return Instructions

1. The CALL Instruction
2. TheRET Instruction

3. Using CALL and RET
4. Subroutine Nesting

5. Self-Review Questions

Including Files

1. File Format
2. Self-Review Questions

Experiment — Using Subroutines
1. Introduction/Obijectives

Demonstrate the 8088 MPU memory stack
Demonstrate ways you can use the stack
Demonstrate the subroutine instructions
Demonstrate the INCLUDE assembler directive

pooe

2. Procedure/Discussion

Unit 4 Examination

Examination Answers

Self-Review Answers

XV

XVI

UNIT 5 — New Addressing Modes

A.

B.

Introduction

Unit Objectives

Data Storage

1. Arrays

2. More Data Definition
3. Self-Review Questions
Structures

Structure Template
Structure Initialization

Structure Access
Self-Review Questions

BN

Records

Record Template
Record Initialization
Accessing Record Data
Self-Review Questions

ol

Register Indirect Addressing

1. Instruction Format
Using the Register Indirect Addressing Instruction
3. Base/Index Addressing

[yS]

a. Based Addressing
b. Indexed Addressing
c. Based Index Addressing

4. Self-Review Questions

G. Experiment — Indirect Addressing
1. Introduction/Objectives
a. Demonstrate the new assembler directive define
doubleword
b. Demonstrate the two new methods for arranging
data — Structures and Records
c. Demonstrate the various forms of indirect address-
ing
2. Procedure/Discussion
H. Unit 5 Examination

I. Examination Answers

J. Self-Review Answers

XVIII

UNIT 6 — Expanding the Instruction Set

A.

B.

Introduction

Unit Objectives

Data Transfer Instructions
General Purpose
Address Object

Flag Transfer
Self-Review Questions

Bow o

Arithmetic Instructions

Addition

Self-Review Questions
Subtraction
Self-Review Questions
Multiplication
Self-Review Questions
Division

Self-Review Questions

$0 . g e I

Bit Manipulation Instructions

1. Logicals

2. Shifts

3. Rotates

4. Self-Review Questions

Experiment — Expanding the Instruction Set
1. Introduction/Objectives
a. Demonstrate the transfer and translation instruc-
tions
b. Demonstrate a few of the arithmetic instructions

c. Demonstrate the bit manipulation instructions

2. Procedure/Discussion

XIX

G. Unit 6 Examination

H. Examination Answers

I. Self-Review Answers

UNIT 7 — Segmented Memory And /O
A. Introduction
B. Unit Objectives
C. EXE Programs
Program Structure
Segment Addressing
Overriding the Default Segment

Changing Segments In Mid-Program
Self-Review Questions

g w e

D. Segment Attributes
1. Self-Review Questions
E. Intraand Intersegment Addressing
1. Intrasegment Addressing
2. Intersegment Addressing
3. Self-Review Questions

F. 1/O Addressing

1. Port Structure
2. Port Addressing

a. FixedPort
b. Variable Port

3. Self-Review Questions

| Xxi

G. Experiment — EXE Programming and VO
1. Introduction/Objectives
a. Demonstrate the difference between EXE and COM
programs
b. Demonstrate the process of linking multiple EXE-
type program object files
c. Demonstrate the various segment attributes
d. Demonstrate /O
2. Procedure/Discussion
H. Unit 7 Examination

I. Examination Answers

J. Self-Review Answers

XX

UNIT 8 — Interrupts and Strings

A

B.

C.

Introduction

Unit Objectives

Interrupts

1.

4.

5.

Internal Interrupts

a. Interrupt Vector Table
b. Interrupt Types

c. Segment Attribute AT
External Interrupts

a. Interrupt Request

b. Non-Maskable Interrupt
c. Interrupt Routine

Reset

DMA (Direct Memory Access)

Self-Review Questions

String Operations

O gRote bl

String Instructions
Self-Review Questions
String Direction

Repeat String Variations
Register Loading
Self-Review Questions

Experiment — Software Interrupts and String Operations
1. Introduction/Objectives

Demonstrate the conditional interrupt INTO
Demonstrate a user-defined interrupt
Demonstrate all of the string instructions
Demonstrate the LDS and LES instructions

pooe

2. Procedure/Discussion

Unit 8 Examination

Examination Answers

Self-Review Answers

XXIII

XXIV

UNIT 9 — Code Macros and Other Interesting MACRO-86 Features
A. Introduction
B. Unit Objectives
C. Procedures
Structure
Calling a Procedure

1
2
3. Recursive, Nested, and In-Line Procedures
4. Self-Review Questions

D. The Group Directive

1. Structure
2. Program Uses
3. Self-Review Questions

E. Conditional Directives

Structure

IF Variations

The ELSE Directive
Self-Review Questions

ol

F. Macro Directives and Operators

Macro Definition

Calling a Macro

Other Macro Directives
The Conditional Macro
Macro Support Directives
Special Macro Operators
Self-Review Questions

NO O s wN R

G. Assembler Listing Directives
1. Format Directives
a. PAGE

b. TITLE
c. SUBTTL

XXV

2. Listing Control Directives

d. (VoOUT

b. .LIST/XLIST

c. .XALL/LALL/SALL
d. .LFCOND/.SFCOND

3. Self-Review Questions
H. Experiment — Loose Ends
1. Introduction/Objectives
a. Demonstrate the GROUP and PROCEDURE direc-
tives
b. Demonstrate how the Conditional directives can be
used in a program
c. Demonstrate the features of code macros
d. Demonstrate the assembler listing directives
2. Procedure/Discussion
I. Unit 9 Examination
J. Examination Answers
K. Self-Review Answers
APPENDIX A — Number Systems Data
APPENDIX B — Machine Coding Instructions
APPENDIX C — Computer Arithmetic

APPENDIX D — Instruction Set

INDEX

INSERT

Unit 1

INTRODUCTION
TO THE MICROCOMPUTER

1-2 l UNIT ONE

CONTENTS
IDEPORUCHON. o5 - ramas smeei s fioe o Heses owes beaes oo b5ees 1-3
Unit Objectivesovnenin it iirieratneneneninananenans 1-5
Ut ACHVILY GORA& . cvavs somen vvwen o9 son vlEals 56 sos uy aws 1-6
Microcomputer OVerviewoeoeueineenannnencnanns 1-7
The 8088 Microprocessor Bl acl e w00 e D ... 1-15
Interfacing To Memorycoveuunnn P 1-23
Controlling the MPU0iiiietiiiiininninnininenss 1-33
Experiment T T S RO g MO L USROS 1-39
Unit 1 Examination Sita R SLHAT BT SO A 1-55
Examination ANSWersccoies0essoossssvosoresnss .+ 1-57

Self-ReVIEW ADNSWETLS . .. oo vttt inen it s enannseeeesnns 1-61

Introduction to the Microcomputer 1 '3

INTRODUCTION

Assembly language, unlike the higher level programming languages,
requires that the “programmer” understand the microcomputer “hard-
ware” that operates under the control of the “software” program. This
is necessary, since you as the programmer must control the step-by-step
operation of the system, right down to the specific register or memory
location that stores the data. Therefore, before you can learn to program
in assembly language, you must learn how the microcomputer operates
in a general fashion, and specifically the operation of the microproces-
sor unit (MPU), the brain of the microcomputer.

The purpose of this Unit is to introduce the microcomputer, and then
describe the microprocessor in detail. You will learn the function of
each register in the 8088 MPU. You will also learn how the MPU “talks”
to memory (the microcomputer data storage area) and input/output (V/O)
circuits. This will form the basis or foundation for the entire course.

If you are already familiar with an MPU outside of the 8088/8086 family,
don’t skip this unit, thinking there is nothing to be learned. While
all MPUs operate in a similar manner, each is unique in how it inter-
faces to memory or /O, and to its internal registers. Without a sound
understanding of how the 8088 MPU operates, you will have a difficult
time learning the MACRO-86 Assembler.

In order to get the most out of this and future units, it is necessary
that you have a working knowledge of number systems. If you are not
familiar with binary, decimal, and hexadecimal notation, refer to Ap-
pendix A at the end of the text. This Appendix contains a short discus-
sion of number systems.

1 '4 UNIT ONE

By the same token, an understanding of computer math is also desira-
ble. Appendix B provides a quick review of binary addition, subtrac-
tion, multiplication, and division, as well as One’s complement and
Two’s complement arithmetic, and the Boolean operations AND, OR,
Exclusive OR (XOR), and Invert.

Because we will be using different number systems throughout the
course, each will, when necessary, be identified by a letter suffix. For
example, the number 10110101 binary will be written 10110101B. Gen-
erally, a number without a suffix is assumed to be a decimal number.
Also, a hexadecimal number that begins with a “letter” will be preceded
by a zero. Thus, F1A3H is properly written 0F1A3H.

The following are suffixes used in this course:

Binary B
Decimal blank or D
Hexadecimal ... H

Use the “Unit Objectives” that follow to evaluate your progress. When
you can successfully accomplish all of the objectives, you will have
completed this Unit. You can use the “Unit Activity Guide” to keep
arecord of those sections that you have completed.

introduction to the Microcomputer 1 "5

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1. Define the following terms: Microprocessor, microcomputer,
clock, memory device, bus, interface adapter, I/O device, input,
output, /O port, program, stored program concept, loading, bit,
byte, word, doubleword, high byte, low byte, high word, low
word, memory width, memory length, read only memory (ROM),
random access memory (RAM), physical address, logical address,
base address, segment, register, accumulator, and machine code.

2. Name the two processing units within the 8088 MPU.

3. Name and describe the function of the following sections of the
8088 MPU: The arithmetic logic unit (ALU), data/general regis-
ters, segment registers, flag registers, address generation and bus
control section, instruction queue, and instruction pointer (IP).

4. Draw a block diagram of a basic microcomputer and identify the
various components.

5. Draw a diagram of and identify the 8088 MPU registers.

6. Describe how the physical address of instructions and data is
determined in various segments.

1-6 Junrone

UNIT ACTIVITY GUIDE

Time

Read the Section on “Microcomputer Overview.”

Complete Self-Review Questions 1-22.

Read the Section on “The 8088 Microprocessor.”

Complete Self-Review Questions 23-30.

Read the Section on “Interfacing To Memory.”

Complete Self-Review Questions 31-46.

Read the Section on “Controlling The MPU.”

Complete Self-Review Questions 47-55.

Perform the Experiment.

Complete the Unit 1 Examination.

Check the Examination Answers.

Introduction to the Microcomputer 1 '7

MICROCOMPUTER OVERVIEW

In general terms, a microcomputer is a device capable of accepting
data, applying prescribed processes to data, and supplying the results
of these processes. It usually consists of input and output devices, data
storage devices, and a process control unit. The data is processed in
binary (digital) form, although the microcomputer can accommodate
data using almost any number base.

This section will first examine the devices that make up a typical micro-
computer. Then it will describe the process that makes the microcom-
puter such a powerful tool. Finally, it will present the language of the
microcomputer.

Microcomputer Hardware

You have probably heard many terms for the process control unit in
a microcomputer. The two most common are the Central Processing
Unit (CPU) and the Microprocessing Unit (MPU). We'll use the term
MPU throughout this course, since it more accurately describes the
process control unit of a microcomputer.

1-8 | uniTone

As the name implies, the MPU controls the operation of the microcom-
puter. It is a complex logic element that is capable of performing arith-
metic, logic, and control operations such as the sending and receiving
of data from outside of the Microcomputer. Figure 1-1 is a simple block
diagram of a microcomputer. Notice that all of the other devices inter-
face with the MPU. We’ll leave a detailed description of the MPU for
a later section in this unit.

MICRO [
PROCESSOR E:
UNIT.
mPu EE

BUS—*

PERMANENT

_} MEMORY

MICROCOMPUTER

Figure 1-1
A basic microcomputer.

Introduction to the Microcomputer 1 '9

A feature of the microcomputer is the speed with which it processes
data. This speed makes event timing critical. To control the timing,
every microcomputer contains a master clock that produces a digital
pulse train. Data is either received by, or sent from, the microcomputer
at times dictated by the clock pulse. For instance, data may be brought
into the MPU only on the falling edge of a clock pulse. The clock has
no control over what occurs within the MPU; however, it does control
when an action takes place.

Also included in the basic microcomputer are the memory devices.
These devices, depending on their type, act as either temporary or per-
manent storage areas for information or data. The size of the memory,
or the number of memory devices in the microcomputer, will vary great-
ly depending on the needs of the user.

Interface adapter is an all-encompassing term for a wide range of com-
ponents. These components ensure that the electrical input signal is
of an amplitude and type compatible with the rest of the circuitry in
the microcomputer. By the same token, they ensure the compatibility
of the output signal with the peripheral devices. Interface adapters can
include items as simple as a bistable latch, or as complex as an analog-
to-digital converter. To a great extent, the application dictates the type
of interface adapter needed for a particular microcomputer and the as-
sociated input/output device.

Tying all of these devices together is the bus. It consists of a number
of parallel conductors. These conductors serve as a multisignal path
for efficient data transfer. Generally, the bus will contain from 8 to
20 conductors depending on the type of data that must be transferred.

Finally, there are the /O devices themselves. These external devices
transmit data to, or receive data from, a microcomputer. Quite often,
these are referred to as peripherals since they are located on the
“periphery” of the microcomputer. The type of device used for /O is
limited only by the user’s imagination. Again, a great deal depends
on the desired application. However, some of the more common devices
are the line printer, CRT (video display), and keyboard.

Of course, all data received from an I/O device is referred to as input.
Likewise, any data or direction from the microcomputer to the “outside
world” is called output. In addition, the point at which the I/O device
connects to the microcomputer is called the /O port.

1-10 | uniTone

Stored Program Concept

For each operation that an MPU can perform, there is a corresponding
instruction. You, as the programmer, will organize instructions into
a sequence in order to perform specific tasks. These organized groups
of instructions are called programs.

A simple task, such as adding a list of numbers, may consist of only
a few instructions; while other tasks, like controlling an industrial
robot, may require hundreds of instructions. If it were necessary for
you to enter, or load, these programs into the microcomputer one in-
struction at a time each time the program was used, a great deal of
time would be wasted. To overcome this drawback of microcomputer
use, the stored program concept was introduced.

In the stored program concept, the list of instructions, or program, is
permanently maintained on some type of storage medium. Floppy disks
are a popular medium commonly used with the microcomputer. How-
ever, ROM, magnetic tape, punched paper tape, and rigid disks are
also used as storage media.

When the time comes to use a program, it is loaded into the microcom-
puter. Essentially, the loading of a program is simply the copying of
the program from the permanent storage medium into the temporary
storage area in the microcomputer’s memory. An extremely long pro-
gram can be loaded in a few seconds, versus the hours it could take
to manually load the same program.

The stored program eliminates the time delays and accuracy problems
introduced by the human operator. Once a program is stored, it can
be called on quickly and its accuracy is usually unquestioned.

Introduction to the Microcomputer I 1 '1 1

Bits, Bytes, Words, and Doublewords

Our language is based on the alphabet. The individual letter is the
smallest recognizable part of the human language. The smallest part
of a microcomputer’s language is the bit. A bit is a binary 1 or 0 that
represents an electrical state. Usually, a 1 indicates the presence of
voltage while a 0 indicates its absence. The Microcomputer’s language,
written in these electrical states, is commonly referred to as machine
code.

The byte is the unit of microcomputer language that is smaller than
a microcomputer word, but longer than a bit. A byte is roughly compara-
ble to a syllable in human oriented language. By convention, a byte
is a unit of information eight bits long.

Each word used in the 8088 MPU is 16 bits, or two bytes, in length.
Figure 1-2 shows a word. The eight most significant bits of the word
are referred to as the high byte, while the eight least significant bits
are referred to as the low byte.

HIGH BYTE LOW BYTE
TE34371I 0310
LIIHIIHI—L—IHIII

- o
16-BIT WORD
Figure 1-2

A 16-bit microcomputer word.

1-12 | uniTone

The 8088 MPU also makes limited use of a 32-bit quantity called a
doubleword. An example of a doubleword is shown in Figure 1-3. The
first 16 bits of the doubleword, shown on the left of the Figure, are
called the high word; and the last 16 bits, shown on the right, are
called the low word. As with the word, each part of the doubleword
is further divided into a high and a low byte.

HIGH BYTE LOW BYTE HIGH BYTE LOW BYTE
T6543210"76543210° “7T6543210% 65432710
ELE LT L P LELT R LT RIS VTRES L)
\ -] L - ~ s

16-BIT HIGH WORD 16-B1T LOW WORD
, PR —

.

32-BIT DOUBLE WORD

Figure 1-3
A 32-bit doubleword.

Longer computer word lengths allow us to work with larger numbers.
A byte can specify, in binary, positive numbers between 0 and decimal
255. The word allows us to represent numbers up to 65,535. Double-
words can represent numbers up to 4,294,967,295. This doesn’t mean
that the microcomputer is restricted to working with numerical values.
The contents of the byte, word, or doubleword can mean many things.
Besides the numbers between 0 and 65,535, a 16-bit word can also
represent a pair of coded characters. In fact, a bit pattern can represent
any meaning you wish to assign to it. For example, a byte of information
containing all ones could signify the decimal number 255. But if this
same pattern is the output of a thermal sensor, it can just as easily
mean that a hazardous situation exists in a piece of equipment.

At this point, it is not important to understand how an MPU differen-
tiates between 11111111B, which means 255, and 11111111B, which
means excessive temperature. It is important, however, to understand
that identical bit patterns do not always mean the same thing.

lntroducﬁontothaMicrooomputerl 1"13

Self-Review Questions

The self-review questions in this course are designed to reinforce your
knowledge of the material you have studied. To obtain the maximum
benefit from these exercises, read each question and answer it to the
best of your ability. If you are unsure of the correct response, refer
back to the appropriate section of the text. When you are satisfied with
your answers to all of the questions, check them against the correct
answers at the end of this unit.

1. The is a complex logic element capable of per-
forming arithmetic, logic, and control operations.

2. An MPU, along with all of the other components necessary to
interface with the outside world, is called a

3. The acts as the master timer for the microcom-
puter.

4. devices, depending on the type, act as either
temporary or permanent storage areas for data.

5. The consists of a number of parallel conduc-
tors that link together the various components that make up the
microcomputer.

6. The adapter ensures that the electrical input

signals are of an amplitude and type compatible with the rest
of the circuitry in the microcomputer.

7. External devices which transmit data to, or receive data from,
a microcomputer are known as

8. Information received from an I/O device is referred to as

9. Any information or direction from the microcomputer to the out-
side world is called an

1-14 | uniTone

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

The point at which the /O device connects to the microcomputer
is called the

Instructions organized into a sequence in order to perform a spe-
cific task is called a/an

In the concept, a program
is permanently maintained on some type of storage medium.

Copying a program from a permanent storage medium into the
temporary storage area in the microcomputer’s memory is called
a program.

The smallest part of a microcomputer’s language, the
, is a binary 1 or 0 that represents an electrical

state.

A microprocessor’s language written in electrical states is referred
toas

The is a unit of information 8 bits long.

Each used with the 8088 MPU is 16 bits long.

The eight most significant bits of a word are called the

The eight least significant bits of a word are called the

The 8088 MPU makes limited use of a 32-bit quantity called a

The 16 most significant bits of a doubleword are called a

The 16 least significant bits of a doubleword are called a

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 1-61.

oot tothw acrocorpute | 1-15

THE 8088 MICROPROCESSOR

The 8088 MPU has considerable capabilities. Matching these
capabilities is its complexity. Internally, there are almost two dozen
8-bit and 16-bit registers which are accessible to the programmer. These
registers serve as storage locations for data that is used by the MPU
during program execution. The programming instruction set (the code
that controls the operation of the MPU) consists of over 100 basic in-
structions, with over a thousand possible variations of these instruc-
tions.

To begin our discussion of the 8088 MPU, let’s start with a “stripped
down” microprocessor. This will give you a chance to see how the
microprocessor operates without cluttering the description with a lot
of needless registers. Once we have the foundation laid, we will add
a few more registers and show you how they are used in specific opera-
tions. The next section, “Memory,” will complete the discussion of
the MPU and show you how the 8088 MPU can access over one million
bytes of memory.

1-16 | unone

Stripped Down MPU

The “stripped down” 8088 MPU, as shown in Figure 1-4, consists of
two separate processing units: the execution unit (EU) and the bus inter-
face unit (BIU). The EU performs arithmetic and logic operations, con-
trols most of the internal registers, and manipulates data. The BIU per-
forms bus operations, including data transfer, and controls the remain-
ing registers for the MPU. Both of these processing units are capable
of independent operation. That is, each unit can perform its assigned
duties without assistance from the other unit. Although the EU is iso-
lated from the bus by the BIU, for certain operations it can gain access
to the bus by requesting the BIU temporarily suspend its activities so
that it can either store or retrieve data for the EU.

_ ARITHMETIC
OPERANDS 1> LOGIC
" UNIT (ALUY
ACCLMULATOR (AX) REGISTER
LI T T I IrriITrrigd Z\ E
BASE (BX) REGISTER §
T TITTTITTITIIITTT11 S N |
COUNT (CX) REGISTER | =1
HEEEEEREEERENEEN| |
DATA {DX) REGISTER =
I T T III111] | 2 QUELE
| =
B
| S
_________________ I
BIU OPERANDS g
' S
o
=
=
ADDRESS
INSTRUCTION POINTER {IP) l< GEaTJEsRégvoThrlegr ’
BUS

Figure 1-4
Simplified block diagram of an 8088 MPU.

Introduction to the Microcomputer | 1-17

THE EXECUTION UNIT

In our “stripped down” version of the 8088 MPU, the EU consists of
two sections. These are the general, or data, registers and the arithmetic
logic unit (ALU).

The general, or data registers, are the most useful registers in the micro-
processor. They act as temporary storage areas for data that has been,
or will be, used in computations performed by the MPU. Information
can be brought into these registers from memory or peripherals via
the BIU. Data contained in these registers can also be transmitted from
the MPU to memory or peripherals; again, via the BIU. Finally, data
can be transferred from one register to another within the EU.

All data registers are 16 bits long. Each of these registers can be further
divided into a high byte, consisting of the eight most significant bits,
and a low byte which contains the eight least significant bits. For exam-
ple, Figure 1-5 shows the AX (Accumulator) register divided into the
high byte (AH) and the low byte (AL). The other data registers can

be similarly divided.
AH AL
L & b o b
“ — J
AX
Figure 1-5
The AX register.

The 8088 MPU can use the data registers to hold 16 bits of data or
it can manipulate data that is held in these registers. This is fine for
16-bit operations. However, the 8088 can also perform operations on
single bytes of data. In this case, either the high or low byte of a register
can be specified for the particular operation. In effect, each data register
can act as a 16-bit or as two 8-bit registers.

1'18 _ UNIT ONE

All general registers are basically interchangeable. Most operations per-
formed on data in one register may also be performed on data in the
other registers. However, as the names accumulator, base, count, and
data imply, the individual registers do have “special” uses. Some in-
structions require that specific operations be performed in certain regis-
ters. These will be discussed in detail when the particular instructions
are introduced later in the course. For now, you may consider all gen-
eral registers to be identical in structure and function.

The arithmetic logic unit is the “workhorse” of the EU. It receives in-
structions from the program through the BIU. The binary bit patterns
from these instructions are applied to the internal circuitry of the ALU.
The ALU then performs an arithmetic operation, such as add or sub-
tract, or a logic operation, like AND or OR, on the data specified by
the instruction.

At times, the information contained in the instruction and in the regis-
ters is not sufficient to complete an operation. When this occurs, the
ALU, as part of the EU, can “ask” the BIU to obtain additional informa-
tion from memory or to store a piece of data in memory. The ALU
always interfaces with memory and other peripherals through the BIU.
It has no contact with the “outside” world.

THE BUS INTERFACE UNIT

The bus interface unit consists of the address generation and control
section, the instruction queue, and the instruction pointer.

The address generation and bus control section performs all bus opera-
tions for the MPU. It retrieves, or fetches, instructions from the program
for the ALU. When necessary, it accesses locations, or addresses, in
memory so that the EU can either retrieve data from or send data to
those locations. This section also controls the direction in which infor-
mation flows on the bus. If information is to be transmitted, the address
generation and bus control section ensures that all proper control sig-
nals are set for transmit. The same is done when it is necessary to
retrieve data. It could be said that this section performs the same func-
tion as a switchman in a rail yard; it ensures that all things arrive
at the proper destination, at the proper time, and in the proper order.

Introduction to the Microcomputer I 1-19

The instruction queue in the 8088 MPU is made up of four 8-bit wide
registers. These serve as a temporary storage area for instructions or
data. The EU normally receives its instructions and their associated
data through the queue. Thus, while the EU is processing an instruction,
the BIU can continue to access additional instructions and data, main-
taining a full queue for increased performance. While this may seem
like useless information for a programmer, you will find later, that
knowing the state of the queue can help you understand and determine
program timing.

The instruction pointer is a 16-bit register that contains the address,
or location of the next instruction to be executed. In effect, the instruc-
tion pointer controls the sequence in which the program will be exe-
cuted by telling the EU which instruction it must execute next. Each
time the EU accepts an instruction from the queue, the instruction
pointer is updated to point to the next instruction in the program se-
quence.

1-20 | uniT ONE

Execution Unit Registers

In addition to the accumulator, base, count, and data registers, the EU
contains four data, or general, index/pointer registers and a status flag
register. These are shown in Figure 1-6. The stack pointer, base pointer,
source index, and destination index registers, like the previously de-
scribed registers, can participate in most arithmetic and logic opera-
tions. With the exception of the base pointer and status/control flag
registers, these registers are also used implicitly in some instructions,
as shown in Figure 1- 7.

15 H 8,7 L 0
S R,
AF] { AL
BX
CX
— — i —— —— — | couwr
DX
— —— —— —j— —] o
GENERAL
REGISTERS
- STACK
POINTER
BASE
8P POINTER
5 SOURCE
INDEX
- DESTINATION
I INDEX

LLL [lorpeiieireiseizel jafl PPF| kce) FLaGs

Figure 1-6
Registers contained in the execution unit of the 8088 MPU.

Introduction to the Microcomputer l 1 ‘21

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word I/O

AL Byte Multiply, Byte Divide, Byte
11O, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect VO

SP Stack Operations

Sl String Operations

Di String Operations

Figure 1-7
EU registers used implicitly with specific instruction
types.

The flag regirter contains nine 1-bit flags. The other seven bits in the
register are undefined (they could assume a logic 1 or 0 level when
power is applied to the processor). Figure 1-8 lists the flag bits that
are used. The three control flags can be set or cleared by the program
to alter processor operation. For example, setting TF (the trap flag) puts
the processor into single-step mode for debugging a program. The other
six flag bits reflect the result of an arithmetic or logic operation. A
group of instructions is available that allows a program to alter its
execution depending on the state of these flags; that is, on the result
of a prior operation. Trying to define the operation of each flag at this
time is not practical, since you must first understand the instructions
that affect the flags. Therefore, we will defer these descriptions to a
later time.

CONTROL STATUS
FLAGS FLAGS
—t— — A

ﬂ
GG AE
CARRY
PARITY
AUXILIARY CARRY

ZERO

SIGN

OVERFLOW
INTERRUPT-ENA BLE
DIRECTION

TRAP

Figure 1-8
8088 MPU flag register bits.

1 '22 | UNIT ONE

Self-Review Questions

23.

24,

25.

26.

27.

28.

29.

30.

The 8088 MPU consists of two separate processing units. They
are the and the

The or registers are tempo-
rary storage areas where data can be held either before or after
it is used in computations by the microprocessor.

The performs
arithmetic or logic operations on the data specified in the instruc-
tions.

The

performs all bus operations for the 8088 MPU.

The is a 4-byte temporary
storage area within the MPU that is used to hold instructions
or data.

The is a 16-bit register that
contains the address of the next instruction te be executed by
the MPU.

The four data or general registers that can be used as either 8-bit
or 16-bit registers are the
,and registers.

The register contains nine 1-bit status and con-
trol registers.

Introduction to the Microcomputer | 1-23

INTERFACING TO MEMORY

As stated earlier, memory consists of a number of storage locations
outside of the MPU. So that order is maintained when you use memory,
each location in memory is assigned a number or address.

Figure 1-9 shows how memory is organized. Notice that each location
has its own address and that these are numbered sequentially from
00H through OFFH. Notice also that we have used the 0 prefix and
H suffix to indicate hexadecimal notation. This particular memory has
256 separate addresses.

¥
LOCATION 00H

LOCATION 01H
LOCATION 02H

A

LOCATION OFFH

Figure 1-9
Typical memory organization.

The width of the memory refers to the amount of data, in bits, which
can be stored in or retrieved from any given memory location at one
time. The memory shown in Figure 1-9 is eight bits wide. Therefore,
you can store or retrieve one byte of data at each memory address.
A memory which is 256 bytes long and eight bits wide is commonly
referred to as a 256 X 8 memory.

1-24 | uniTone

The width of memory used with an MPU is dictated by the amount
of data that the MPU can access at one time. Since the 8088 MPU
fetches one byte at a time, the memory used with the 8088 MPU must
be eight bits wide. On the other hand, the length of memory is deter-
mined by the needs of the user. For some applications, a 256-byte mem-
ory is more than sufficient; but, for others, memory of a significantly
larger size is required.

There is a limit, however, to the length of the memory that can be
used with an MPU. Recall that the instruction pointer always points
to the address of the next instruction to be executed. Also, remember
that the IP is a 16-bit register. Because of this, the number of memory
locations addressable by the 8088 MPU should be 0000H through
OFFFFH or 65,536 different addresses. Actually this isn't strictly true.
You will find later in this section that the BIU uses four segment regis-
ters to extend the addressable memory range to over a million bytes.

Before we discuss the expanded addressing capabilities of the 8088
MPU, let’s look at the different types of memory that are used in a
microcomputer.

RAM vs ROM

Thus far, all storage areas for programs and data have been grouped
under the general term memory. There are actually two classifications
of memory which must be considered in order to understand the micro-
computer. The first of these is ROM, or read only memory. ROM is
a permanent storage area for programs or constants that are essential
for the operation of the microcomputer. As the name implies, informa-
tion can only be read from this type of memory. The contents of a
read only memory are protected from any inadvertent write operation
that may occur.

An example of the type of program that might be stored in ROM is
the system startup routine, more commonly called the “bootstrap”
routine, for a microcomputer. This routine sets up the MPU and its
supporting circuits according to certain parameters. In fact, it’s the
“bootstrap” routine that makes it possible for you to enter and run
your Own programs.

Introduction to the Microcomputer 1 '25

There are other programs which are also stored in ROM, and they per-
form many functions. These programs, however, have two things in
common: they are permanently stored in ROM and they are protected
from changes due to a write operation or a power failure.

Generally speaking, you will not have an occasion to program a ROM.
This is usually done at the factory at the time of manufacture, and
each ROM is designed for a specific use with a specific system.

The second type of memory is RAM, or random access memory. In
actuality, all memory is randomly accessible. That is, it does not have
to be addressed in sequential order. But, through convention, only read/
write memory is called RAM. In any case, RAM acts as a temporary
storage location, within the microcomputer, for programs and data.
Most programs you wish to run, and most data you wish to use, must
first be loaded into RAM. Once in RAM, programs and data may be
altered by the user. As you can see, both RAM and ROM have their
own particular uses. You as the programmer, will deal primarily with
RAM. Now let’s see how the 8088 based microcomputer memory is
structured.

Memory Segmentation

Up to this point, we have limited our 8088 based microcomputer to
65,536 bytes of memory. In actuality, the 8088 MPU can address a
megabyte, or 1,048,576 bytes of memory. It does this by organizing
the available memory into segments.

A segment is a logical unit of memory that is 64K bytes long. (1K byte
is equal to 1024 bytes.) Each segment is made up of an uninterrupted
block of memory locations. In addition, each segment is a separately
addressable unit. Because it is separately addressable, each segment
must be assigned a base address. This base address then becomes the
starting address of the segment in memory.

1 '26 UNIT ONE

The 8088 MPU has four 16-bit registers that can contain the starting,
or base, address of a segment. They are the CS (code segment), DS
(data segment), SS (stack segment), and ES (extra segment). Each of
these registers serve a specific function: program instruction, or code,
is addressed by the CS register, data is addressed by the DS register,
the stack is addressed by the SS register, and additional data is ad-
dressed by the ES register. You will learn more about these register
functions when you get into programming the MPU. For now, think
of these registers as storage locations for the base address of different
segments in memory.

Naturally, a megabyte of memory can contain more than four 64K seg-
ments. However, four uniquely defined memory segments is generally
more than enough at any one time in a program. Should you need
to identify another segment area, it’s a simple matter to change the
base address in one of the segment registers.

LOCATING THE SEGMENTS

Each of the four segments can be located anywhere within the available
one-megabyte memory space. The segments may be adjacent to each
other or separated by blocks of empty memory. In fact, the segments
may overlap either partially or fully. Figure 1-10 shows three different
segment arrangements. In part A, the segments begin at some place

MEMORY MEMORY MEMORY
[00000H 7 00000H 7 00000H
-~ = = = = 2

CODE Z ALL
seoment | (K ,CPBE SEGMENTS | [84K
DATA e }-Df‘“
SEGMENT O R]
"7 JEXTRA
30 T LU ettt e
STACK
SEGMENT ; 6K i L
| (T OFFFFFH OFFFFFH

® ©

Figure 1-10
Examples of segmented memory.

Introduction o the Microcomputer | 1-27

within memory and are located adjacent to each other. In part B, the
segments overlap each other. When two or more segments overlap, they
share the overlapped portion of memory. In part C, all four segments
share one 64K segment of memory. That may seem to be a problem.
However, you will find when you begin writing programs that this
type of segment arrangement is very common.

ADDRESS DETERMINATION

So far, we've established that the 8088 MPU can address up to one
megabyte of memory. In addition, this memory is arranged in 64K-byte
groups called segments. Finally, the base, or starting, address of a seg-
ment is identified by a 16-bit segment register within the MPU. Now
if it takes a 20-bit address value to identify a location within a megabyte
of memory, how can a 16-bit segment register produce that 20-bit value?

The answer lies within the address generation and bus control section
of the 8088 MPU. To completely understand the process, however, we
must introduce a couple of new terms: logical address and physical
address.

The logical address is the address of an instruction or piece of data
within a 64K byte segment of memory. This segment of memory can
be at any location within the 1 megabyte of available memory. The
logical address never exceeds OFFFFH because this is the highest ad-
dress available in any 64K segment.

The logical address is used as an offset. That is, it is combined with
the contents of one of the four segment registers in order to produce
a physical address that is a unique memory location in the 1 megabyte
of addressable memory. To understand how the process works, let’s
look at the actual procedure as it occurs within the MPU.

1-28 | uniTone

For this example, we will have a program that begins at logical address
0100H and the contents of the CS register will be OFFOOH. This is
shown in Figure 1-11 part A. The CS register is used here because
the MPU “assumes” that program code resides in the code segment.

The address generation and bus control section performs two operations
in order to produce the 20-bit physical address. First, it shifts the con-
tents of the segment base register four bit positions to the left. This
results in a new 20-bit base value in which the four least significant
bits are zeros, as shown in Figure 1-11 part B.

Next, the address generation and bus control section adds the 20-bit
base value to the 16-bit logical address as shown in Figure 1-11 part
C. The result of this addition is the physical address of the beginning
of the program in the code segment, OFF100H. This 20-bit physical
address is located in the segment whose base is pointed to by the CS
register. Physical addresses within other segments are calculated in
a similar manner.

You may come across a physical address specified as 0000:0000 in
the hexadecimal number base. This gives the base address value and
the logical, or offset, address value in the order BASE:OFFSET. To de-
termine the actual physical address, the base value is shifted four bits
left and then added to the offset value. This is a convenient method
for specifying an address, since you can easily identify the actual base
and offset components of the physical address.

LOGICAL ADDRESS lofofofofoJofofifofofofofo]o]o]o] o100
€S REGISTER [rjrfufrfajafafijofofofo]ofofo[o]Froon
A
LOGICAL ADDRESS Jofojofo]ofojofr]fofolofo]ofofo]o]oro0H

SHIFTED
csrecister [1[1[1 [1] f1]1To oJoTo oo o o]0 ol o olrrooon

PHYSICAL
aopress Rrlilifrfafafu]afofofofifefofofofo]e[ofo}FFiooH

C

Figure 1-11
Calculating the physical address.

Introduction to the Microcomputer 1 '29

SEGMENT CONTENTS

It would be impossible to maintain any order in a program which used
four segments unless the contents of these segments were defined in
some way. Unless otherwise specified by the programmer, the MPU
“assumes’’ that certain information will be in specific segments.

For instance, the list of instructions which make up the program, is
“assumed” to reside in the code segment. The data, which consists
of the variables used in the program, is “assumed” to reside in the
data segment. Meanwhile, the stack, a temporary storage area in mem-
ory, is “assumed” to reside in the stack segment. The exira segment
is considered a secondary data segment, however, there are certain
special operations that “assume” that data is moved into or out of the
extra segment.

DETERMINING THE PHYSICAL ADDRESS OF EACH SEGMENT

Physical addresses within each of the four separately addressable seg-
ments are determined in different ways. The address generation and
bus control section uses a specific set of default registers and values
to obtain the logical address which is used as an offset within the seg-
ment. It then combines these logical addresses with the contents of
the various segment registers to obtain the physical addresses of the
instructions and data in the different segments of memory. Let's see
how this is done for each of the segments.

The logical address, at least in the case of the code segment, is obtained
from the instruction pointer. To state this another way, the contents
of the IP are the logical address. To obtain the 20-bit physical address
which locates the instruction in memory, the contents of the IP are
combined with the logically shifted contents of the CS register. That
is, the CS register contents are shifted four bits to the left. Then the
contents of the IP are added to the shifted CS register contents to pro-
duce the physical address. The MPU locates all instruction code in
this manner.

1 '30 UNIT ONE

The physical address of any memory location in the data segment is
computed by shifting the contents of the DS register four bits to the
left and adding to this quantity the effective address of a specified
operand. The operand is part of the assembly language instruction and
the effective address is a form of logical address that is derived from
the computations performed by the MPU as prescribed for the address-
ing mode in which the instruction is written. You’ll learn more about
operands and effective addresses later in the course. The concept you
should keep in mind is that a 16-bit address value is added to the
shifted contents of the DS register to produce the physical address of
data in memory.

Data within the stack segment can be addressed through two different
registers. The first register is the Stack Pointer (SP). The Stack Pointer
provides the logical address that is added to the shifted contents of
the SS register to produce the physical address of the item within the
stack. In this way, the SP register is similar in function to the IP register.

The other register that defaults to the stack segment is the Base Pointer
(BP). Whenever the BP is used in indirect addressing, its contents form
the logical address portion of the physical address within the stack
segment. You'll learn about the various addressing modes in a later
unit.

The final segment is the extra segment. It is used primarily for specific
program functions called “string operations.” In a string operation, the
default register that contains the extra segment logical address is the
Destination Index (DI) register. As with the other segments, the contents
of the ES register are shifted four bits to the left and the logical address
in the DI register is then added to this base to form the physical address.
In operations that do not involve “strings,” there is no default register
associated with the extra segment. It is used in a manner similar to
the DS register.

The 8088 MPU, depending on the particular instruction, will locate
code and data, or variables, within the four segments according to the
parameters discussed. This is a convenience to you as the programmer.
For instance, if you wish to access some data within the data segment,
the address generation and bus control section automatically uses the
effective address of the data, as a logical address, along with the con-
tents of the DS register to determine the physical address of the data.
You don’t have to specify the segment in the instruction.

Introduction to the Microcomputer I 1-31

Self-Review Questions

31. The of memory refers to the amount of data,
in bits, which can be stored in, or retrieved from, any given mem-
ory location at one time.

32. The of memory is determined by the needs

of the user, but limited to the addressing capability of the MPU.

33. is a permanent storage area for
programs or constants that are essential for microcomputer opera-
tion.

34. acts as a temporary storage

area, within the microcomputer, for programs or data.

35. A is a logical unit of memory that is 64K bytes
long.
36. Each segment is assigned a which is the

starting address of the segment in memory.

37. Name the four segment registers in the 8088 MPU.

SCow»

38. The address is the address of an instruction
or piece of data within a 64K block of memory.

39. Describe how the address generation and bus control section pro-
duces a 20-bit physical address.

1-32 | unrone

40.

41.

42,

43.

45.

46.

The four segments can be located anywhere in memory.

True/False

The segments may be adjacent to each other, but they must not
overlap.

True/False

The MPU “assumes” that instructions and data are randomly lo-
cated throughout the four segments.

True/False

Where does the MPU obtain the logical address of an instruction
in the code segment?

The logical address for determining the physical address in the
data segment is not stored in a register.

True/False

State two ways that the physical address is determined in the
stack segment.

What is the default register for the logical, or offset, address in
the extra segment when it is used in a string operation?

Introduction to the Microcomputer 1 "33

CONTROLLING THE MPU

Now that you have a general understanding of physical characteristics
of a microcomputer and the 8088 MPU, it’s time to see how you control
the microcomputer through the MPU. Recall that we said the MPU
is controlled by a set of instructions called a program. The program
tells the MPU exactly what operations to perform. When an 8088 based
microcomputer executes a program, it goes through a fundamental se-
quence that is repeated over and over again. That sequence is called
the “fetch-execute” sequence. What it means is that the MPU will fetch
and execute each instruction in a manner unique to the 8088 MPU.
We'll examine this fetch-execute sequence first, then we'll look at what
makes up the machine code instruction.

Accessing Memory (Fetch-Execute Sequence)

Recall that the microcomputer system clock acts as a timer for the
MPU — it determines when an action will occur. In the 8088 MPU,
a fetch can occur every four clock pulses, or clock cycles. (Actually,
the length of time between fetches can vary a slight amount. However,
to avoid confusion at this time, we will assume four clock cycles.)
A grouping of four clock cycles is called a bus cycle. Thus, a fetch
can occur once during each bus cycle. The execution time for instruc-
tions, on the other hand, varies. Some instructions require as little as
two clock cycles to perform, while others take in excess of 100 clock
cycles. This can lead to some interesting timing situations.

The BIU and EU operate essentially independently of each other. While
the BIU is fetching instructions and data, the EU is executing the in-
structions. If the BIU takes one bus cycle (four clock cycles) to fetch
one byte of an instruction, and the EU is executing an instruction that
takes only two clock cycles, the EU will have to wait for the BIU. How-
ever, an instruction that requires 100 clock cycles to execute will give
the BIU enough time to fill the queue with data. Thus, when the EU
is done with the first instruction, it can immediately execute the next
instruction, since it is waiting in the queue. Naturally, a program will
contain a mixture of instructions so that the EU and BIU will be able
to operate on almost a continuous basis.

1-34 | unirone

Later, when you begin writing programs, there will be times when you
will have to take into consideration the fetch-execute timing. Appendix
D, at the back of this text, contains a complete listing of the 8088 MPU
instruction set. Each instruction has a table indicating the execution
time for the instruction and the number of bytes needed to construct
the instruction. When necessary, we'll show you how to determine
the amount of time it takes to execute a group of instructions. Right
now, let’s see what constitutes a machine code instruction.

Machine Code Instruction

The 8088 MPU has a number of capabilities. Addition, subtraction,
read an input, and write to a peripheral, as well as logical processes,
are all part of the microprocessor’s repertoire. The microcomputer,
however, can do nothing on its own. It can perform only the operations
that you tell it to perform.

In order to communicate with the microcomputer, you must learn its
vocabulary. For each operation that a microcomputer can perform, there
is a corresponding instruction. The instruction is used by the program-
mer to “tell” the microcomputer what operation it must perform. A
microcomputer’s vocabulary consists of the group of instructions called
the instruction set.

The microcomputer, however, is a digital, or binary, device that only
understands ones and zeros, or machine code. Therefore, instructions
must be written for the computer in machine code. The binary pattern,
or machine code, for each instruction is unique to that instruction.
That pattern, when applied to the internal circuitry of the MPU, causes
a particular operation to occur.

Depending on the instruction, the required machine code can be one
to six bytes long. The first one or two bytes tell the MPU what operation
is to be performed. The next one, two, or four bytes supply the MPU
with the logical address for a memory location or data.

Introduction to the Microcomputer 1 '35

Figure 1-12 shows the typical machine instruction encoding format
used with the 8088 MPU. The six most significant bits of the first byte
of the instruction contain the operation code or opcode. The opcode
tells the MPU precisely what type of operation it is to perform. Each
type of operation has its own unique opcode.

The next bit of the first byte of the instruction is the direction bit.
If the destination of the data used in the operation is a register, then
this bit is set to 1. On the other hand, if the destination is in memory,
then the bit is reset to 0.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6

OPCODE [D|W[MOD] REG | RIM |

1 | LREGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION
REGISTER OPERAND/EXTENSION OF OPCODE

REGISTER MODE/MEMORY MODE

WORD/BYTE OPERATION

DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION} CODE

Figure 1-12

Typical machine instruction encoding format.

The last bit of the first byte of the instruction is the word bit. A 1
at this location tells the MPU that a 16-bit word is involved in the
operation. A 0 in the same place indicates that an 8-bit byte operation
is being performed.

The second byte of the instruction, when it is required, contains all
of the information necessary to determine the source and destination
operands for the instruction. In general, you can say that an operand
is any quantity that is used in or results from an operation. However,
this broad definition may result in some confusion in certain cir-
cumstances. Therefore, for instructional purposes, it is best to use three
specific definitions rather than a single general description of an
operand. When we are referring to operands, we will use the terms
“source operand” and “destination operand.”

1-36 | uniTone

The destination operand is a location, either in a register or in memory,
which holds the results of a given operation.

The source operand, on the other hand, contains the data upon which
the operation will be performed. Either a register or a memory location
can be used as a source operand. Figure 1-13 illustrates the possible
combinations of source and destination operands using registers and
memory locations. Notice that a register can act as both the source
and the destination operand in a single instruction. Unlike registers,
in a single instruction, memory locations may act as either the source
or the destination operand, but never as both.

DESTINATION OPERAND SOURCE OPERAND
REGISTER REGISTER
MEMORY = REGISTER
REGISTER —— MEMORY

Figure 1-13

Register and memory as source and destination operands.

There is a third type of operand called an immediate operand. The
immediate operand is not a location in memory, nor is it a register
within the MPU. The immediate operand is an actual byte or word
of data. This byte or word of data is encoded within an instruction
and therefore resides within the program. Since this type of operand
is not a place either in memory or within the MPU, it can only serve
as a source operand. The possible combinations of immediate, and reg-
ister or memory operands are shown in Figure 1-14.

DESTINATION OPERAND SOURCE OPERAND
REGISTER IMMEDIATE DATA
MEMORY -~ IMMEDIATE DATA

Figure 1-14

Use of immediate data as an operand.

introduction to the Microcomputer

Getting back to the example in Figure 1-12, the first two bits of the
second byte of the instruction contain the MOD field. This field tells
the MPU whether register or memory operands are used in the instruc-
tion. If either the source or destination operand is in memory, the in-
struction is said to be in the memory mode. If this is the case, the
MOD field also indicates how the address of the operand is calculated.
If neither of the operands is a memory operand, the instruction is in
the register mode.

The next three bits of byte two are the REG or register field. In most
instructions, this field contains the identity of a register used as an
operand. If the instruction is in the register mode, the indicated register
is the destination operand for the instruction. When the instruction
is in the memory mode, the contents of this field can specify either
the source or the destination operand for the instruction. In some cases,
the contents of this field are an extension of the opcode presented in
the first byte of the instruction.

The final three bits of this byte are the R/M or register/memory field.
Again, as in the register field, the contents of this field depend on
the mode in which the instruction is written. If the instruction is in
the register mode, this field specifies the register which acts as the
source operand for the instruction. In an instruction written in the
memory mode, however, the contents of this field tell how the effective
address, or actual address, of either the source or destination operand
is calculated.

The last four bytes shown in Figure 1-12 vary a great deal depending
on the contents of the first two bytes of the instruction. In fact, in
many instructions, these bytes are not used. However, if the displace-
ment bytes are used, they will contain numerical data used in the calcu-
lation of the effective address of an operand. If the data bytes are used
in an instruction, they will contain the immediate operand for the in-
struction.

At this point we must point out that not all instructions follow the
same format. Our example was presented as a limited learning tool
to familiarize you with the general instruction structure and terminol-
ogy. This will be useful, however, if you need to analyze a group of
instruction code. If you wish to know more about machine encoding
and the code structure for the complete instruction set of the 8088
MPU, refer to Appendix C at the back of this text.

1-37

1-38 | uniTone

Self-Review Questions

47.

48.

49,

50.

51.

52.

53.

54.

55.

A group of four clock cycles is called a

The 8088 MPU can fetch and execute instructions at the same
time.

True/False

If the MPU clock is operating at 4 MHz, the MPU can effectively
fetch instructions per second.

The is used by the programmer to “tell” the
computer what operation it is to perform.

A microcomputer’s vocabulary consists of a group of instructions
called an

The portion of the instruction tells the micro-
computer what type of operation to perform.

The operand is a location, either in a register
or in memory, which holds the results of a given operation.

The operand contains the data upon which an
operation is performed.

An operand is an actual word or byte of data.

Introduction to the Microcomputer 1 '39

EXPERIMENT

The Microcomputer’s MPU
and Memory Structure

OBJECTIVES: 1. Demonstrate the 8088 MPU registers
and show how they can be manipu-
lated by machine code.

2. Introduce a few simple 8088 MPU
instructions.

3. Demonstrate the difference between
RAM and ROM.

Introduction

Recall from the Course Introduction that we stipulated a number of
prerequisites to completing this course. Directly related to this and the
later experiments are the following:

® You must have access to a microcomputer that uses a form of
Microsoft’s Disk Operating System (Zenith’s Z-DOS, IBM’s PC-
DOS, etc.).

e In addition to the DOS and its standard supporting files, you will
need a copy of Microsoft’s Macro Assembler and its supporting
files:

MASM.EXE
LINK.EXE
LIB.EXE
CREF.EXE
EXE2BIN.EXE

® You must be familiar with the microcomputer and the DOS to
the extent that you can read the disk directory, run a program,
format a disk, copy a file, and delete a file.

¢ Finally, you must be able to use Microsoft’s editor, EDLIN.COM,
or a similar text editor. We will use EDLIN in all of our experiment
examples. However, as you become more proficient in your pro-

gramming, you will find that a sophisticated text editor is very
helpful.

1 ‘40 _ UNIT ONE

In this experiment, we will use the program debugger, DEBUG.COM,
to examine the 8088 MPU registers and memory. One of the fundamen-
tal uses of DEBUG is to troubleshoot assembly language programs.
While we won’t be using it for that purpose in this experiment, it will
prove helpful in later experiments.

For now, the debugger will allow you to examine all of the MPU regis-
ters discussed in this unit. You will also move data into and out of
the registers and observe the effect program execution has on the In-
struction Pointer register. Finally, the debugger will give you the oppor-
tunity to manipulate data in memory.

While we could have you load the necessary program machine code
into memory, one byte at a time, there is an easier way; write the pro-
gram in assembly language, and then let the microcomputer create the
machine code and load it into memory. Therefore, in the first part of
the experiment, you will write an assembly language program, assemble
the program, and convert the resulting object code to executable
machine code.

Introduction to the Microcomputer 1 '41

Procedure

Refer to Figure 1-15 as you perform the following steps. The figure
represents the data displayed on the console from the time you call
up EDLIN until you end the editing process. Depending on the micro-
computer and the version of EDLIN that you are using, you may not
see the title line or version number shown in the figure. Note that
the asterisk (*) preceding each line of program code was produced
by the editor, it is not part of the code.

A:EDLIN TEST.ASM

EDLIN version 1.92

New file

*1
1z *TEST SEGHENT
2:% ASSUME CS1TEST, DS: TEST, SS: TEST,ES: TEST
3% ORG 1604
41%START: MOV AX, 1111H
S:# MOV BX, 5555H
bi# ADD AX,BX
7:% MOV CX,AX
8:*TEST ENDS
i END START
10:*#°C

*E

A:

Figure 1-15

Using EDLIN to write the program TEST.ASM.

1. Call up the editor and specify the file, or program, you are about
to create as TEST.ASM. Remember, you must always specify a
file name when you run EDLIN.

Note that we will use the terms “program” and “file” throughout
the course to mean the same thing. While the term file normally
relates to data on a mass storage device such as a floppy disk,
common usage has made its definition generally equivalent to

1-42 | uniTone

2. Enter the Insert mode and type the program beginning on line
1 and ending on line 9. The space between each column is made
with the “TAB” key. The “C” on line 10 represents the editor
code “CONTROL C” (IBM'’s editor code is called “CONTROL
BREAK”) that causes the editor to leave the Insert mode.

The first three lines and the last two lines of the program contain
assembler directives. These directives provide the assembler with
specific information about the program. The remaining four lines,
4 through 7, contain the actual program instructions and data
in assembly language form.

3. After you have entered the program, end the edit process by typ-
ing “E” and RETURN. This allows you to exit the editor and
save the program TEST.ASM.

Refer to Figure 1-16 as you convert the assembly language program
TEST.ASM into machine executable code in the following steps. Again,
the figure represents the console display as you perform the steps. The
title blocks for the assembler, the linker, and the EXE2BIN converter
programs may not match those in the figure. This information is deter-
mined by the type of microcomputer and the version of the software
you are using.

A:MASM TEST;
The Microsoft MACRO Assembler
Version 1.07, Copyright (C) Microsoft Inc. 1981,82

Warning Severe
Errors Errors
[})
A:LINK TEST;

Microsoft Object Linker V1.10
(C) Copyright 1981 by Microsoft Inc.

Warning: No STACK segment
There was 1 error detected.
A:EXE2BIN TEST.EXE TEST.COM

Exe2bin version 1.5

Figure 1-16
Converting TEST.ASM to machine executable code.

Introduction to the Microcomputer 1 '43

At the “A:” prompt, type “MASM TEST;” and RETURN, as
shown. This calls the assembler program MASM.EXE and
specifies that the program TEST.ASM is to be assembled, produc-
ing the appropriate files.

The title block for the assembler and two error messages will
be displayed. The error messages take the form:

Warning Severe
Errors Errors
0 0

If any value other than 0 is in the error message, you have an
error in your program. The assembler will identify the error type,
and print the line that contains the error. Often, an error in one
line will create an apparent error in another line. For example,
if you left the colon out of line 4, the assembler would flag line
4 in error, but it would also flag line 9 in error because of its
reference to line 4. If an error is indicated, return to the editor
and make any necessary changes. If there are more than one, fix
the obvious ones first, then reassemble the program following
the description given at the beginning of step 4. When the obvious
errors are fixed, the not too obvious errors will probably disap-
pear. If all else fails, erase the file TEST.ASM from the disk and
write it over again. Once you get a good assembly, proceed with
step 5.

. At the “A:” prompt, type “LINK TEST;” and RETURN. This calls

the object file linker program, LINK, and specifies that the object
file TEST.OBJ should be converted to a machine executable file,

As the linker processes the data, it will print a title block, a warn-
ing message, and an error message. This is normal and does not
indicate a problem. The warning message indicates that there is
no identifiable stack area. The error message relates to the missing
stack segment. The program you wrote doesn’t need a stack.
Therefore, the warning is not important. Later in the course, it
will be significant. Any other warning or error message would
indicate a problem with the file stored on the disk. If that should
happen, try reassembling and linking the program TEST.ASM one
more time,.

1 "44 UNIT ONE

6. Atthe “A:” prompt, type “EXE2BIN TEST.EXE TEST.COM” and
RETURN. This calls the EXE to binary conversion program that
translates the TEST.EXE file to TEST.COM.

Depending on the microcomputer and software you are using,
you may not see the title line or version number shown in Figure
1-16.

Discussion

You have just written a short program in assembly language and then
converted that program into machine executable code. While you may
not fully understand what you did, that is not important at this time.
The point of the exercise is to create a machine code program that
you can use to manipulate a few of the MPU registers. Later in the
course, we will explain all of these processes in great detail. Right
now, let’s call up the debugger and examine the MPU registers and
memory.

Procedure Continued

7. Call up the debugger, by typing “DEBUG” and RETURN. You
may or may not see a title line. The debugger command prompt
is either a “right arrow” or a hyphen, depending on the debugger.

8. Type “D100” and RETURN. You will see a display similar to
the one in Figure 1-17. You have just executed the dump com-
mand. While the command can take many forms, the three most
common are:

Dyyyy:xxxx (dump segment:offset address)

Dxxxx (dump offset, default segment is DS register
value)
D (default segment is DS register value,

offset is IP register value)

Iintroduction to the Microcomputer 1 '45

PRINTABLE

MEMORY MEMORY ASCIHI

ADDRESS CONTENTS CHARACTERS
A: DEBUG
DEBUG version 1.08
0100 ¥
0h07:0100 FB 83 7E FB FF 74 42 8B-5E F iB 18 B4 0@ x.~x.tB."x....4.
2A09:0110 Bt 05 D3 EO 03 @4 18 17-589 4 :46 EC 00 @@ 1.5'.....FnGF1,.
0A09:0120 FF 76 oC A ©A 00 1D @D-89 DF GECBY ® .vivoewe._.Dvi9.
0A99:0130 @1 1E 04 BE 46 EA IF FC-F2 g1 46 0C 0Fj.irL.Y.F..
0A07: 0140 02 FF 46 08 FF 4E 04 EB-SE B7 @ DI E3 ..F,.N.k..".7.0¢
0A0F:90150 6B 45 08 3B 87 10 0D 746-909 56 9A OC 82 .F.j...v.BL'P...
0R09:9160 @5 0B BB SE F4 03 SE 08-Di OE OF 89 46 ..."t.".QcC.....F
0A07:0170 Fb6 83 F8 FF 75 20 FF 74-6C 1D @D 89 DF v.Xull Visuuus ..
>

Figure 1-17
Debugger memory dump.

Since you used the second form, your segment value in the mem-
ory address may not match the value in Figure 1-17. Notice in
the figure that the dump display contains three columns. The
large center column contains the hex contents of 128 consecutive
memory locations, starting at the address specified by the dump
command. These are the actual current contents of memory, in
our microcomputer. Your display probably won’t match the con-
tents in the figure.

The left column contains the physical address (segment:offset)
for the first byte of memory in each row. Naturally, the address
of the first byte is the address specified in the dump command.
To determine the address of a memory byte within a row, begin
counting from the left end of the row with the number zero hex.
When you reach your byte, add the count to the row address,
and you have the physical address of the byte. For example, the
byte circled in the third row of the figure is at address 0A1BBH.

SEGMENT = 0A090H
OFFSET = 0120H
COUNT = 0BH
ADDRESS = 0A1BBH

The column on the right displays the ASCII character associated
with the code at each memory address. This lets you read any
text that may be stored in memory. If there is no printable charac-
ter for that code, the ASCII listing uses a period. The term ASCII
stands for American Standard Code for Information Interchange.
Most microcomputers use ASCII for data transfer. We’ll expand
on the concept when we get into assembly language program-
ming.

1'46 UNIT ONE

9. Now that you understand the dump display, let’s load some data
into memory that you can recognize. To do this, we’ll use the
fill command. Refer to Figure 1-18 and type the command “F100
17F FF” and RETURN. This tells the debugger to load the byte
value OFFH into 128 consecutive bytes of memory, beginning at
offset 0100H and ending at offset 017FH. The segment part of
the address is found in the DS register. However, at this time,
the DS register contents are the same as those in the CS register.
Therefore, you have just loaded OFFH into the area you examined
earlier, D100. To verify this, reexamine the area; type “D100”
and RETURN. The memory area from offset 100H to 17FH should
be filled with FF.

A: DEBUG

DEBUG version 1.08

>D100

9A09:0100 F8 83 7E F8 FF 74 42 8B-SE F8 SA 87 1B 18 B4 00 x.~x.tB."x....4.
0A09:0110 Bl 05 D3I EO 02 06 18 17-89 46 EE C7 46 EC 00 00 1.5'.....FnGFl..
0A09:0120 FF 76 ©C 9A OA 00 1D @D-89 DF 06 C4 76 EC BY @0 .v......._.Dv19.
0A09:0130 @1 IE 04 BE 46 EA IF FC-F2 AS IF 59 81 46 0C 00 Fj.!rL.Y.F..
0A09:0140 02 FF 44 08 FF 4E 06 EB-9E 8A SE OA B7 @ D1 E3 ..F..N.K..~.7.Qc
0A09:0150 BB 46 08 3B 87 10 0D 76-07 B8 25 27 50 9A OC @2 .F.;...v.8L'F...
0A99:0160 05 OF SB SE F4 03 SE 08-Di E3 8B 87 O OF 89 46 ..."t.".Qc.....F
0A09:0170 F& 83 F8 FF 75 20 FF 76-0C 9A 0A 00 1D OD 89 DF voXeU oVeweeenn_
100 17F FF

D100

0A09:0100 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF ceveevnnneecenns
0A99:0110 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF ooiiviiiinennns
0A09:0120 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF cvveveeisneenens
0A09:0130 FF FF FF FF FF FF FF FF=FF FF FF FF FF FF FF FF vevvvnsennsenees
00910140 FF FF FF FF FF FF FF FF=FF FF FF FF FF FF FF FF tiivnnneaeeonns

@A09:0150 FF FF FF FF FF FF FF FF=FF FF FF FF FF FF FF FF cuvecneceeen... .
®A09:0160 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF PR vvvvvnnnnennenes
0A09:017@ FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF iivvivennnvnnnns

>

Result of filling section of memory with 0FFH.

Figure 1-18

Introduction to the Microcomputer 1 '47

10.

Now it’s time to load the program you wrote earlier. The first
step is to identify the program. Refer to Figure 1-19 and type
“NTEST.COM” and RETURN. This tells the debugger the name
of the program you wish to load is TEST.COM. Load the program
by typing “L” and RETURN. Since all COM type programs are
always loaded into memory at offset 0100H, in the current code
segment of memory, you can verify the program was loaded. Type
“D100” and RETURN. As Figure 1-19 and your display shows,
the first ten bytes of displayed memory no longer contain the
value OFFH. Instead, they contain the program machine code.

INTEST.CON

L

>D1ed

2h89: 0100
0A09:0110 F
©0A09:0120 F
2A09:0130 F
0A09:0140 FF
20910150 FF FF
0A0T7:10166 FF FF
QA09: 0170 FF FF

7

U5 @3 C3-8B C8 FF FF FF FF FF FF 8..5WL.C.H......
FEFF FFFE FF FF FFFE FFFF PP covceces. o
FF FF FF=FF FF FF FF FF FF FF FF vaveenes reeeean
FE EFEF-EE FEFF EF PR BFEFBE onwsnensimnions
FF FF FF-FF FF FF FF FF FF FF FF vevenescrncasens
FF FF FF-FF FF FF FF FE FF FF FF vuvevsencannoses
FF FF-FF FF FF FF FF FF FF FF vevveesneencsens
FF FF-FF FF FF FF FF FF FF FF trarssarsmnnRn

Figure 1-19
Naming, loading, and verifying the program was loaded.

Recall that the program you wrote first loads the value 1111H
into the AX register. Then it loads the value 5555H into the BX
register. Next it adds the contents of the BX register to the con-
tents of the AX register. Finally, it moves the contents of the
AX register into the CX register. In the following steps, you will
cause the MPU to execute each of these instructions. The debug-
ger will display the results after each execution.

1-48 | unrone

11.

Before you execute the first instruction, you should determine
the current contents of the MPU registers. Type “R"” (for register)
and RETURN. Figure 1-20 shows the debugger’s response to the
register command. The first line identifies the eight general regis-
ters. The second line shows the four segment registers, the In-
struction Pointer register, and the status of eight of the nine flags.
The Trap flag isn’t shown, since the debugger considers its value
insignificant for debugging purposes. Rather than show each flag
and its state (for example, ZF =0), the debugger uses a simple
code to conserve space. The code is given in Figure 1-21. The
last line in the register display shows the address of the current
instruction (code segment:offset), the instruction contents in hex
machine code, and the assembly language translation of the
machine code. Notice that the address of the current instruction
matches the contents of the Code Segment register and the con-
tents of the Instruction Pointer. These registers always point to
the next instruction to be executed. Since no instructions have
been executed, they point to the first instruction in the program.
Keep in mind that the contents of your segment registers may
not match the values shown in Figure 1-20.

R

AX=0000 BX=0000 CX=000A DX=0000 SP=FFF@ BP=0000 S1=0000 DI=0000
DS=0R09 ES=0AGT SS=0A09 CS=0AG9 1P=016@ NV UP DI PL NZ NA PO NC
GhO7:0100 BBI1111 MOV AX, 1111

b

Figure 1-20
Examining the MPU register contents with the debugger.

FLAG NAME SET CLEAR
Overflow ov NV
Direction DN Decrementing UP Incrementing
Interrupt El Enabled DI Disabled
Sign NG Negative PL Plus
Zero ZR NZ
Auxiliary Carry AC NA
Parity PE Even PO Odd
| Carry CcY NC
Figure 1-21

Flag set and flag clear codes.

Introduction to the Microcomputer 1 '49

12.

Now that you know the current status of the MPU, let’s trace
(single-step) through each instruction and observe the results. Fig-
ure 1-22 shows the results of each trace operation as well as the
original status of the MPU registers. Type “T” and RETURN. The
first instruction, MOV AX,1111H, is executed. The value 1111H
is moved into the AX register. The Instruction Pointer is incre-
mented to point to the next instruction. The third line in the
display is updated to show the address and contents of the next
instruction to be executed.

AX=0000 BX=0000
DS=0A09 ES=0R0T
0A09:0100 BB1111
>

AX=1111 BX=0800
DS=0/09 ES=0R09
0A07:0103 BBSSS5S
>T

AX=1111 BX=5535
DS=0A09 ES=0AQ9
QR09:9106 03C3
T

AX=6b666 BX=5555
DS=0A07 ES=0R0?
2A09:0108 8BCB
b

AX=bb66 BX=5555
DS=0A®7 ES=0AQ9
0RO7:010A FFFF
>

CX=000A DX=0000 SP=FFF®

SS=0A0F CS=0A09
MoV

IP=0106

AX, 1111

CX=000A DX=0000 SP=FFF@

SS=0n09 CS=0A0Y
MoV

IP=0103

BX, 5555

CX=000A DX=0000 SP=FFF®

SS=0A0T CS=0A09
ADD

1P=0106

AX, BX

CX=000A DX=0000 SP=FFF@

SS=0M09 CS=0R09
MoV

IP=0i08

CX,AX

CX=66656 DX=0000 SP=FFF@

$5=009 CS=0A09 IP=010A
772 DI
Figure 1-22

BP=0000 SI=0000 DI=0000
NV UP DI Pl. NZ NA PO NC

BP=0000 SI=0000 DI=0000
NV UP DI PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NV UP DI PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NV UP DI PL NZ NA PE NC

BP=0000 SI=0000 DI=0000
NV UP DI PL NZ NA PE NC

Single-stepping through the program TEST.COM.

1-50 | unrone

13.

14.

15.

Type “T” and RETURN. The second instruction, MOV BX,5555H,
is executed. Again, only two registers are affected by the opera-
tion. The value 5555H is moved into the BX register and the
Instruction Pointer is incremented to point to the next instruction.

The first two instructions moved what we call immediate values
into the AX and BX registers of the MPU. An immediate value
is a constant that forms part of the instruction. Thus, you could
say the first two instructions were immediate addressing type
instructions. The next instruction is called a register addressing
instruction, because the value being manipulated is contained
in a register. Inmediate and register addressing instructions are
two of seven addressing modes you will learn about in this
course.

Type “T” and RETURN. The third instruction, ADD AX,BX, is
executed. The contents of the BX register is added to the contents
of the AX register (5555H plus 1111H equals 6666H) and the
Instruction Pointer is incremented to point to the next instruction.
Although the contents of the BX register was added to the con-
tents of the AX register, the BX register retains its original value.
This is true of any MPU register or memory location. When the
contents of a register or memory location is moved, added to,
or subtracted from another register or memory location, the origi-
nal value is not lost or reduced to zero.

Type “T” and RETURN. The fourth instruction, MOV CX,AX,
is executed. A copy of the contents of the AX register is moved
into the CX register and the Instruction Pointer is incremented
to point to the next instruction. As usual, the third line of the
display shows the address and contents of the next instruction.

Question: If the program TEST.COM has only four instructions,
where did the debugger come up with a fifth?

Introduction to the Microcomputer 1 '51

Answer: When the debugger executes the trace command, the
last step is to decode the next byte or bytes pointed to by the
Instruction Pointer and determine the instruction. In most cases,
it will be able to come up with some valid instruction even though
the data it is examining may be garbage. In this case, the next
118 bytes of memory contain the value OFFH. In its quest for
a valid instruction, the debugger has determined that OFFFFH
could be an instruction that uses the DI register, but it isn’t sure
of the instruction type, hence the three question marks.

Discussion

The first part of the experiment gave you a quick example of how a
program is created and stored on a magnetic disk (the stored program
concept). The next part of the experiment had you move the program
into memory, and then single- step through the four instructions. This
gave you an opportunity to see how the MPU registers could be manipu-
lated by a few simple instructions. We didn’t use the flag registers,
since they are instruction dependent and it wouldn’t have been benefi-
cial to you at this time. The last part of the experiment will show
you the difference between RAM and ROM.

1-52 | unirone

Procedure Continued

16.

Before we play with RAM and ROM, there is one important point
you should know about memory. Because of the way that memory
is addressed, it forms a closed loop with itself. That is, when
you get to the end of memory, the next byte you will see when
you increment the address is the first byte of memory. For exam-
ple, examine the last 128-byte segment of memory. Type
“DFFF8:0000”" and RETURN. Figure 1-23 shows the output from
our microcomputer. The last byte in memory contains the value
OFEH. The value in your last byte may be different. Now if you
examine the next 128 bytes, you should be looking at the first
128 bytes in memory. Type "DFFF8:0080” and RETURN. Now
type “D0000:0000” and RETURN. Compare the last two dis-
plays — they are identical. The reason they are identical is be-
cause they both decode to the same address. Segment address
OFFF8H plus offset 0080H equals physical address 100000H.
Since the address bus on the 8088 MPU is only 20 bits wide,
the 21st bit from our addition is dropped, and the decoded ad-
dress is 00000H — the first byte in memory.

>DFFF3: 00600
FFF2:9000 20 20 00 00 00 0@ IC 2-1C @2 IC @0 @0 10 10 38 ev..s 8
FFF3:0010 10 10 12 oC 00 00 06 00-22 22 22 26 1A G0 00 00 i TR
FFF8:0020 00 22 22 22 14 08 €0 00-00 00 22 22 2A 2A 14 00 i S U,
FFF8:0030 06 00 00 22 14 03 14 22-00 00 00 00 22 22 22 1E R I
FFF8:0040 6Z I1C 00 00 0@ 2E @4 08-10 3E 00 00 oC 10 10 20 dicaliaans
FFF8:9050 10 1@ OC 00 00 08 08 08-00 08 08 05 00 98 18 04ccvvvannnss
FFFE:0060 04 02 04 04 18 00 00 30-49 05 00 09 00 @0 00 000].......
FFFE; 0070 EA 90 0@ 91 FE SA EF EE-3E @7 D2 FS 3E 80 D3 FE j...~Zons.Su>.S~
>
Figure 1-23
Last 128 bytes of memory.

To see what we mean, type “D0000:FF00” and RETURN. The
debugger will display memory locations 0000:FF00 through
0000:FF7F. Now type “D” and RETURN. The debugger automati-
cally displays the next consecutive 128 bytes of memory
(0000:FF80 through 0000:FFFF). What you now see on your dis-
play is the last 256 bytes of the memory segment that begins
at segment base addresss 0000H. Type “D” and RETURN one
more time. Now you can see the first 128 bytes of the segment.
Once the debugger reached the end of the segment (logical ad-
dress OFFFFH), the next logical address was 0000H. Thus, the
last debugger display began at logical address 0000H. In display-

Introduction to the Microcomputer 1 '53

17.

18.

ing the memory within the segment, the debugger effectively
“wrapped-around” the end of the segment, back to the beginning.
While this may not seem very significant right now, it could affect
the way you handle the programs you write in the future.

There are no special rules concerning the placement of RAM or
ROM in memory, except for this — the 8088 MPU expects to see
the system “boot” address at the top of memory (FFFF:0000).
Thus, whenever power is applied to the microcomputer, or after
a system “reset,” the MPU automatically goes to address OFFFFOH
and uses the data stored at that and the following locations to
begin system start-up. For that reason, there must be at least 16
bytes of ROM at the top of memory. Normally, all of the system
ROM is placed at the top of memory. Let’s look at those last
16 bytes of ROM — type “DFFFF:0000” and RETURN. The first
16 bytes in the display are values stored in ROM. The next 112
bytes are values stored in RAM.

To demonstrate that ROM does indeed reside at the top of mem-
ory and that it is impossible to write data into ROM, while RAM
is easily written to, try to modify the last 16 bytes of memory
and the first 16 bytes of memory. The fill command isn’t reliable
in this example, so use the examine command instead. Type
“EFFFF:0000” and RETURN. This will cause the value at address
FFFF:0000 to be displayed. Type the characters “FF” and then
tap the “space bar.” This will cause the debugger to write FF
to address FFFF:0000 and then display the value stored at the
next address, FFFF:0001. Continue entering the characters “FF”
and tapping the space bar, until you have made 31 entries. Now
enter “FF” one more time and then tap the RETURN key instead
of the space bar. Theoretically, you have entered the value OFFH
at 32 consecutive locations in memory. Examine the end and be-
ginning of memory — type "DFFFF:0000” and RETURN. What
do you see? The byte values at the end of memory have not
changed; however, the byte values at the beginning of memory
are now OFFH.

1-54 | uniTone

19.

The debugger doesn’t know the difference between RAM and
ROM. Therefore, when you attempted to change those memory
locations, the debugger followed your commands. Since ROM
can’'t be written to, the debugger had no effect on the end of
memory. On the other hand, OFFH was written to the beginning
of memory, since it is composed of RAM, which is easily written
to.

Exit the debugger — type “Q” and RETURN. This completes the
Experiment for Unit 1. If you plan on using the microcomputer
to run another program, “reset” the system first. You modified
a number of memory locations that should contain certain preset
values for program support. Resetting the system will restore
those values. Proceed to the Unit 1 Examination.

Introduction to the Microcomputer 1 '55

UNIT 1 EXAMINATION

The purpose of this exam is to help you review the key facts in this
unit. The problems are designed to test your retention and understand-
ing by making you apply what you have learned. This exam is not
so much a test as it is another learning method. Be fair to yourself
and work every problem first before checking the answers.

1. Draw a block diagram of a basic microcomputer and identify the
various components.

1-56 | uniT one

Name the two separate processing units within the 8088 MPU.

Draw a diagram and identify each of the 8088 MPU registers.

Define the term “segment.”

Segments may be adjacent to each other, separated by blocks of
memory, or they may overlap.

True/False

The Code Segment register contains the value 0101H and the In-
struction Pointer contains the value 0100H. What is the physical
address of the next instruction to be executed?

Introduction to the Microcomputer | 1-97

EXAMINATION ANSWERS

1. Figure 1-24 is a block diagram of a basic microcomputer.

MICROCOMPUTER

MICRO F7
PROCESSOR
UNIT |
MPU
P

BUS—

i

Figure 1-24

TEMPORARY
MEMORY

PERMANENT
MEMORY

INTERFACE [
ADAPTER [

DEVICE

Diagram of a basic microcomputer.

1-58 | unirone

2. The two separate processing units within the 8088 MPU are the
execution unit and the bus interface unit.

3. Figure 1-25 is a diagram of the 8088 MPU registers.

EEe e EEC e
— i r— i ACCUMULATOR
BX]
~— BH ' BL BASE
X
I - aam— " a——
D |
— — g — 2% —— r — DATA
STACK
P POINTER
BASE
8P POINTER
s SOURCE
I INDEX
oI DESTINATION
INDEX
CODE
Cs SEGMENT
DATA
L SEGMENT
STACK
SS SEGMENT
= EXTRA
SEGMENT
o INSTRUCTION
POINTER
of|DF|1F|TF[sE|ze] |AF| |PF| [cF)FLacs

Figure 1-25
8088 MPU register set.

Introduction to the Microcomputer 1 '59

A segment is a logical unit of memory that can be up to 64K
bytes long. Each segment consists of an uninterrupted block of
memory locations.

True. Segments may be adjacent to each other or separated by
blocks of memory. They may also overlap either partially or fully.

If the Code Segment register contains the value 0101H and the
Instruction Pointer contains the value 0100H, then the physical
address of the next instruction to be executed is 01110H.

Segment = 01010H
Offset = 0100H
Total = 01110H

1-60 | unirone

Introduction to the Microcomputer 1 '61

10.

11.

12.

SELF-REVIEW ANSWERS

The microprocessor is a complex logic element capable of per-
forming arithmetic, logic, and control operations.

An MPU, along with all of the other components necessary to
interface with the outside world, is called a microcomputer.

The clock acts as the master timer for the microcomputer.

Memory devices, depending on the type, act as either temporary
or permanent storage areas for data.

The bus consists of a number of parallel conductors that link
together the various components that make up the microcompu-
ter.

The interface adapter ensures that the electrical input signals are
of an amplitude and type compatible with the rest of the circuitry

in the microcomputer.

External devices which transmit data to, or receive data from,
a microcomputer are known as I/O devices or peripherals.

Information received from an /O device is referred to as input.

Any information or direction from the microcomputer to the out-
side world is called an output.

The point at which the I/O device connects to the microcomputer
is called the /O port.

Instructions organized into a sequence in order to perform a spe-
cific task is called a program.

In the stored program concept, a program is permanently main-
tained on some type of storage medium.

1-62 | unirone

13.

14.

15,

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Copying a program from a permanent storage medium into the
temporary storage area in the microcomputer’s memory is called
loading a program.

The smallest part of a microcomputer’s language, the bit, is a
binary 1 or 0 that represents an electrical state.

A microprocessor’s language written in electrical states is referred
to as machine code.

The byte is a unit of information 8 bits long.

Each word used with the 8088 MPU is 16 bits long.

The eight most significant bits of a word are called the high byte.
The eight least significant bits of a word are called the low byte.

The 8088 MPU makes limited use of a 32-bit quantity called a
doubleword.

The 16 most significant bits of a doubleword are called a high
word.

The 16 least significant bits of a doubleword are called a low
word.

The 8088 MPU consists of two separate processing units. They
are the execution unit (EU) and the bus interface unit (BIU).

The data or general registers are temporary storage areas where
data can be held either before or after it is used in computations
by the microprocessor.

The arithmetic logic unit (ALU) performs arithmetic or logic oper-
ations on the data specified in the instructions.

The address generation and bus control section performs all bus
operations for the 8088 MPU.

Introduction to the Microcomputer 1 "63

27.

28.

29.

30.

31,

32,

33.

34,

35.

36.

37.

38.

The instruction queue is a 4-byte temporary storage area within
the MPU that is used to hold instructions or data.

The instruction pointer (IP) is a 16-bit register that contains the
address of the next instruction to be executed by the MPU.

The four data or general registers that can be used as either 8-bit
or 16-bit registers are the accumulator, base, count, and data re-
gisters.

The flag register contains nine 1-bit status and control registers.

The width of memory refers to the amount of data, in bits, which
can be stored in, or retrieved from, any given memory location
at one time.

The length of memory is determined by the needs of the user,
but limited to the addressing capability of the MPU.

Read only memory (ROM) is a permanent storage area for pro-
grams or constants that are essential for microcomputer operation.

Random access memory (RAM) acts as a temporary storage area,
within the microcomputer, for programs or data.

A segment is a logical unit of memory that is 64K bytes long.

Each segment is assigned a base address, which is the starting
address of the segment in memory.

The 8088 MPU has four segment registers. They are:

CS or code segment register.
DS or data segment register.
SS or stack segment register.
ES or extra segment register.

Sowp

The logical, or offset, address is the address of an instruction
or piece of data within a 64K block of memory.

1-64 | uniTone

39.

40.

41.

42.

43.

44,

45.

46.

47.

48,

49.

The address generation and bus control section shifts the segment
base register contents four bit positions to the left. This results
in a 20-bit segment base value in which the four least significant
bits are zeros. The logical, or offset, address is then added to
this value to form the physical address.

True. The four segments can be located anywhere in memory.

False. The segments may be adjacent to each other, and they may
overlap.

False. The MPU “assumes” that instruction code is located in
the code segment, variables are located in the data segment, the
stack is located in the stack segment, and the extra segment is
used for “special operations.”

In the case of the code segment, the logical address is obtained
from the instruction pointer.

True. The logical address for determining the physical address
in the data segment is not stored in a register. It is obtained from
the effective address determined by the operand of an instruction.

In the stack segment, the physical address can be obtained by
adding the offset value in the SP register or the value in the BP
register to the shifted contents of the SS register.

The default register for the logical, or offset, address in the extra
segment is the DI register.

A group of four clock cycles is called a bus cycle.
True. The 8088 MPU can fetch and execute instructions at the
same time, because the 8088 MPU consists of two independently

operating units: the EU and the BIU.

If the MPU clock is operating at 4 MHz, the MPU can effectively
fetch 1,000,000 instructions per second.

Introduction to the Microcomputer 1 '65

50.

51.

52.

53.

54,

55.

The instruction is used by the programmer to “tell” the computer
what operation it is to perform.

A microcomputer’s vocabulary consists of a group of instructions
called an instruction set.

The opcode portion of the instruction tells the microcomputer
what type of operation to perform.

The destination operand is a location, either in a register or in
memory, which holds the results of a given operation.

The source operand contains the data upon which an operation
is performed.

An immediate operand is an actual word or byte of data.

LAASNI

Unit 2

INTRODUCTION TO
ASSEMBLY LANGUAGE
PROGRAMMING

2"2 UNIT TWO

CONTENTS
BRI v v vwaen e gmnats FEEEe SPBEREYY RIS PR 2-3
Unit Objectives R 2-4
LRIt A CRlas o v cis oo 53008 56 Lo RS L bed Coiss 2-5
Assembly Process Overviewooviieninenronnrnaenn 2-6
Elements of Microsoft Assembly Language 2-11
Oporand TYDIDE & i oe5 60 7a 68 505,95 Fhi o sa B 40340 G934 od 2-26
Arithmetic Operators e e 2-33
Program Segmentition ..« vaces vasns v s veeors svwne s sas i 2-38
EXDOIMent . cos b inaain s 0% Seieh et 5588 Seien teean b 2-45
Unit 2 Examinationcccvuiiiiiiiininininrineenns 2-73
Examination ANSWErSicciiiieianinennronannans 2-75

Self-Review ADSWEISc.vuiirienrnnnnnesennnnnssss 2-77

Introduction to Assembly Language Programming 2'3

INTRODUCTION

The first Unit introduced you to the 8088 MPU and the microcomputer
environment in which it operates. While the major concepts were pre-
sented in that unit, a number of items were covered in a general fashion
and a few were completely ignored. It was done this way because these
items were strictly hardware related or more easily understood from
a programming point of view. As you progress through the course, the
items that are programming related will be introduced or expanded
in concept.

This unit introduces you to assembly language programming. First, it
will give you a general idea of what you are creating when you write
and process an assembly language program. Next, it describes what
makes up the assembly language program: instruction format, data allo-
cation, assembler directives and expressions, and operand typing.
These items cover the fundamentals only — enough to let you start
writing programs. The third section in this unit describes program seg-
mentation and its relation to microcomputer memory. Finally, you will
be taken, in a step-by-step manner, through the process of assembling
and linking a program.

Remember that assembly language programming demands that you be
precise in the manner in which you structure the language. The smallest
mistake can cause the assembler to misinterpret or reject the program.
(You may have experienced that problem in the last experiment.) There-
fore, it is important that you learn the material in this unit. If the Self-
Review at the end of a section indicates that you are weak in a certain
area, review that subject.

NOTE: If you have taken the Heath/Zenith Educational Systems course
Advanced Microprocessors, EE-8088, you will notice a similarity be-
tween that course and this course. That is to be expected, since both
courses deal with the same microprocessor, and by default, the same
basic instruction set. However, the assembly language used in Ad-
vanced Microprocessors is very different in concept from MACRO-86.

Use the “Unit Objectives” that follow to evaluate your progress. When
you successfully accomplish all of the objectives, you will have com-
pleted this Unit. You can use the “Unit Activity Guide” to help you
maintain a record of the sections that you complete.

2"4 UNIT TWO

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1.

Define the following terms: assembly language, assembler, object
code, linker, COM, EXE, delimiter, symbol, label, name, expres-
sion, operator, and directive.

Define an instruction statement and a directive statement, name
the fields and their delimiters that make up the statements, and
state the possible contents of these fields.

State the four steps in creating a COM program.

State the characters that can be used in an assembly language
label or name.

State the purpose and use of the ORG, EQU, SEGMENT, ENDS,
ASSUME, END, DB, DW, TITLE, +, —, *, /, MOD, SHL, SHR,
DUP, 7, and RADIX assembler directives and operators.

Use the ADD, SUB, INC, DEC, and MOV instructions in a pro-
gram.

introduction to Assembly Language Programming 2‘5

UNIT ACTIVITY GUIDE

Time

Read the Section on “Assembly Process Overview.”

Complete Self-Review Questions 1-8.

Read the Section on “Elements of Microsoft
Assembly Language.”

Complete Self-Review Questions 9-26.

Read the Section on “Operand Typing.”

Complete Self-Review Questions 27-40.

Read the Section on “Arithmetic Operators.”

Complete Self-Review Questions 41-49.

Read the Section on “Program Segmentation.”

Complete Self-Review Questions 50-60.

Perform the Experiment.

Complete the Unit 2 Examination.

Check the Examination Answers.

2-6 | unrwo

ASSEMBLY PROCESS OVERVIEW

In Unit 1, you learned that the MPU only understands machine lan-
guage (logical ones and zeros). However, writing a useful program in
machine language can be a very tedious operation, and if you make
a mistake, finding the error is nearly impossible. The Experiment had
you write a simple program that could be used by the debugger to
illustrate the operation of the MPU and memory. The program was
written in assembly language — the next step up from machine lan-

guage.

A more human oriented method of communicating with the microcom-
puter, assembly language uses symbolic notation, rather than ones and
zeros, to structure the program code. Basically, this notation consists
of two types of statements. These are the instruction statement and
the assembler directive statement. Figure 2-1 shows the program you
wrote in the first Experiment. Lines 1, 2, 3, 8, and 9 contain assembler
directive statements, while lines 4, 5, 6, and 7 contain instruction state-
ments.

A:EDLIN TEST.ASM

EDLIN version 1.02

New file

*
1:#TEST SEGMENT
2:% ASSUME CS1TEST,DS:TEST,S5: TEST,ES: TEST
3+ ORG 1004
41%START: MOV AX, 1111H
S MOV BX, 5555H
b1t ADD AX, BX
7:% MOV CX,AX
81#TEST ENDS
9 END START
10:4°C

*®

A:

Figure 2-1

Program from Unit 1 experiment.

As the name implies, the assembler directive statement tells the assem-
bler what to do with the instruction statements. These directives do
not become part of the assembled program. Only the instruction state-
ments and any supporting data comprise the final program. Let’s quick-
ly review how a program is created. Later, we’ll get into the nuts and
bolts of the process.

Introduction to Assembly Language Programming 2‘7

The Editor

It's a common misconception that you write assembly language pro-
grams with the assembler. That is not the case, as you learned in the
experiment in Unit 1. The editor program is used to generate the assem-
bler directive and instruction statements called a source program,
source listing, or source code. It is the source program that is processed
by the assembler program.

The program EDLIN.COM is a very simple editor that is supplied with
MS-DOS. Since that is the only editor we can be sure you have, all
of our example programs will be written with EDLIN. If you decide
to use a more sophisticated editor, make sure it is compatible with
the MACRO-86 assembler. Some editors add hidden control characters
to the source code that cannot be translated by the assembler, and thus,
will generate an assembly error.

The Assembler

Once the source program is written, the next step is to translate it into
machine executable code. This is actually a two-step process. The first
step is handled by the assembly language program MASM.EXE. It takes
the alphanumeric code in the source program and converts it into the
binary code described in Unit 1. This produces what we call the object
file.

Recall from the experiment that the source program that you wrote
was called TEST.ASM. The name of the program is TEST. The three
letters following the name are called the file extension. They help you
and the microcomputer identify the program type. The file extension
for your source program is ASM. This identifies the program as a
source listing. Another common term for this type of program is assem-
bly language listing, that is, a program that can be processed by an
assembler.

After the assembler translated the program TEST.ASM, in the experi-
ment, it produced a second program called TEST.OBJ. The file exten-
sion OB] identifies the program as an object file. The object file is essen-
tially a machine executable program. However, there are a few “house-
keeping” chores that must be handled before the MPU can run the
program. This forms the second part of the two-step source program
translation.

2'8 UNIT TWO

The Linker

The second step in translating a source program into a machine executa-
ble program is the linking process. The linker program, LINK.EXE,
takes the object file and joins the several parts and routines into an
executable file with an EXE extension. During the linking operation,
all program segmentation is resolved, and the various parts of a segment
that were specified in separate places in the source code are joined
into consecutive locations in the EXE file.

While linking is considered the final step for producing a run file,
a program that can be executed by a microprocessor, not all object
files produce a usable run file after linking. An EXE file contains, by
definition, a specifically identifiable stack segment and completely re-
locatable code. This means that a specific data storage area called the
stack must be established through an assembler directive, and the pro-
gram instructions and data must be structured so that they can be
loaded anywhere within memory. The program you wrote didn't meet
these requirements. Therefore, it was necessary to perform one more
processing step — conversion to a command file form.

EXE-To-Binary Conversion

The EXE2BIN.COM program is an EXE-to-binary conversion program
that is used to convert some programs with an EXE extension to an
equivalent program with a COM extension. The COM extension stands
for command file code.

Historically, programs for microcomputers were relatively simple con-
structions and made to reside in and use only 64K bytes of memory.
This is the basis for the COM program. The microcomputers that use
MS-DOS are capable of handling much more memory. However, the
structure of the code is different from that of the COM program. The
EXE2BIN program makes it possible to convert a simpler COM-type
program into a form that can be used with MS-DOS.

Introduction to Assembly Language Programming 2'9

Every program is first converted into the EXE format by the linker.
However, unless the original ASM file was written to produce an EXE
file, this EXE file cannot be executed as such. When you write an assem-
bly language program that will become an EXE file, you must incorpo-
rate several characteristics. Likewise, if the program is going to become
a COM file, there are other characteristics you must include. Figure
2-2 is a listing of the most common considerations made when prepar-
ing EXE and COM programs. These are not all of the considerations,
but they are the significant differences between the two types of pro-
grams. While some of the terms may not be familiar, you will learn
what they mean.

.COM Program can occupy only a single segment, and that must
be less than or equal to 64 K bytes.

You cannot specify a stack segment and pointer.

The program must be ORGed at 100H.

You must provide an END <label> statement at the end
of the program. The label will specify the programs start-

ing point.

.EXE The program will be multisegment, normally less than
or equal to 384 K bytes.

The stack pointer will be set to the stack segment auto-
matically.

You do not need an ORG statement.

You use an END <label> statement only for the main
module’s starting segment address.

Figure 2-2

EXE and COM source code considerations.

2-10 | unirTwo

Self-Review Questions

1.

8.

Assembler notation consists of two types of statements: assembler
and

Assembly language programs are written using . or
some other text editor.

The program in text form is called the code.

MASM.EXE is used to translate the program into
code.

The file extension for an assembly language program is

The is used to convert object code to executable
code.

The program is used to convert an EXE file
to a COM file.

The file is limited in size to 64K bytes.

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 2-77.

Introduction to Assembly Language Programming 2'1 1

ELEMENTS OF
MICROSOFT ASSEMBLY LANGUAGE

When you write a microcomputer program, you prepare a list of instruc-
tions the microcomputer must perform in order to do the required work.
Before the microcomputer can do the work, it must read and translate
these instructions, as we described earlier. Now the lowest level of
microcomputer control is provided by binary codes that actually turn
on and off the electrical circuits in the MPU. This lowest level of code
is called machine code, or machine language. One level above that,
and closely related to it is assembly language. This language defines
each machine code with a mnemonic, which is the text abbreviation
for that specific machine operation. In addition to the MPU controlling
instructions, your assembly language program contains a number of
assembler directive statements. These tell the assembler how to struc-
ture the instructions and supporting data. This section teaches you the
proper format for the MACRO-86 assembler instruction and directive
statements.

The Assembly Language Instruction Statement

Figure 2-3 shows a typical assembly language instruction statement.
The instruction is written in a specific format so that it can be properly
translated by the assembler. The instruction statement can be broken
down into smaller sections called fields. Each of these fields contains
some information about the instruction.

LABEL OPCODE OPERANDS COMMENTS

START: MOV AX, 0A3DH : Store immediate value in accumulator

Figure 2-3
The instruction statement.

The first field of the instruction is called the label. Labels are symbolic
addresses that are used by MACRO-86 to identify specific areas in a
program. They can be used to reference procedures within or outside
the 64K segment where they are defined. While a label can be assigned
to any instruction, it is not necessary to put a label on every instruction.

2-12 | unrtwo

The second field in the instruction, called the opcode field, is occupied
by the opcode’s mnemonic. Simply stated, a mnemonic is an ab-
breviated version of the stated MPU operation. For instance, the
mnemonic for halt is HLT; the one for the move operation is MOV;
and the one for subtract with borrow is SBB. Every MPU operation
has a specific mnemonic. A complete list of the 8088 MPU mnemonics,
called an Instruction Set, is provided in Appendix D.

The next field of the instruction is the operand, or operands, field.
Recall that the operands contain the data, or indicate the location of
the data, to be operated upon. The number of operands in an instruction
depends on the type of operation being performed. A move (MOV)
instruction would contain two operands: the destination operand fol-
lowed by the source operand. An increment (INC) instruction would
contain just one operand: the item being incremented. This could be
the contents of a register or the contents of a memory location. Some
instructions require no operand. Clear Carry flag (CLC) is such an in-
struction.

The last field in the instruction is the comments field. Here, you can
state any needed information about the instruction. The comments are
used to document the program as you write it. In a very short program,
the need for documentation is not immediately evident. Once you start
writing longer programs, however, you will find that it is very easy
to forget why you did a certain procedure in a certain way. Comments
also help others to understand your programs.

Of course, you can’t just run all these fields together on a program
line and expect the assembler to make sense of them. There are certain
characters that are used to indicate the beginning and end of the differ-
ent fields. The word delimiter is used to describe a character that marks
the limits of a field. Let’s look at the fields of the sample instruction
shown in Figure 2-3 and see exactly how delimiters are used.

The beginning of the label field is marked by the first letter or character
of the assigned label. The end of the label field is marked by a colon.
The label can be of any length up to the limit of the physical line.
However, the assembler will only use the first 31 characters of the
label to identify the symbolic address.

Introduction to Assembly Language Programming 2‘1 3

The legal characters for a label are:
A-Z 09 ? @ - $

Only the numerals 0-9 cannot appear as the first character of a label.
Lower case letters can also be used, but the assembler will treat them
as upper case letters. Therefore, you must never try to distinguish be-
tween two otherwise identical labels by using upper and lower case
letters.

Because a “space” is not a legal character, the “.” character is often
used in its place. For instance, the label NUMONE can be written
NUM_ONE. This makes it easier to read. However, be sure you don't
use a reserved word for a label. A reserved word is any word used
by the assembler to identify registers, directives, instructions, or opera-
tions. For example, the words SEGMENT, ADD, INC, and AX are con-
sidered reserved words.

Normally, the label is on the same line as the instruction it is identify-
ing. However, it can be placed on the line preceding the instruction.
This is especially useful if you are using a long label. If a label is
not used, the field can be left blank.

The beginning of the next field, the opcode field, uses the end delimiter
of the label field as its beginning delimiter. The end of this field is
indicated by a space character. The space character, which indicates
the end of the opcode field, also marks the beginning of the operands
field.

If an instruction uses two operands, they are separated by a comma.
The comma denotes the end of the destination operand and the begin-
ning of the source operand. The end delimiter of the operand field
is a carriage return if no comments are to be used on the program
line.

If you wish to use a comment on a particular program line, the begin-
ning of the comment is indicated by a semicolon. All information after
the semicolon is considered as a comment. If a comment runs longer
than the space to the end of the line allows, it may be continued on
the next line as long as you begin the line with a semicolon. The end
of the comment field, as well as the end of the program line, is marked
by the carriage return.

2-14 | unrwo

In order to make your programs more readable, you can insert multiple
spaces or tabs anywhere that a space, colon, or semicolon is used as
a delimiter. A few program lines that look like this:

NUMBER :MOV AX,CX;MOVE REGISTER CONTENTS
ADD BX,0FF3AH; ADD IMMEDIATE TO REGISTER

can be rewritten to look like this:

NUMBER: MOV AX,CX ;MOVE REGISTER CONTENTS
ADD BX,OFF3AH ;ADD IMMEDIATE TO REGISTER

As you can see, this greatly improves the appearance and readability
of the program.

The Assembler Directive Statement

Thus far, we have talked about the instructions that the MPU executes.
However, there are times when you want to pass on some information
to the assembler such as where to store certain information in memory.
When this happens, you must use an “instruction” that is intended
for the assembler rather than the MPU. These “instructions” to the as-
sembler are called assembler directive statements, or assembler direc-
tives.

Although assembler directives are included in the source program
which you write, they are never translated into machine language. After
all, assembler directives are meant strictly for the assembler. The MPU
could not understand them anyway.

Assembler directives are constructed in much the same way as instruc-
tions. Each assembler directive consists of a number of fields; however,
these fields differ somewhat in their content and purpose from the
fields of the instruction.

Figure 2-4 shows the fields of a typical assembler directive. The first

field is the name field. Some assembler directives require that a name

be specified in this field. With other directives, a name field is optional.
NAME DIRECTIVE ARGUMENT COMMENTS

COUNT EQU OF3H ; Set COUNT value

Figure 2-4

The assembler directive statement.

Introduction to Assembly Language Programming 2‘1 5

A name can assume one of two attributes: variable or symbol. A variable
represents an address offset where a specified value may be found.
As the name implies, the value stored at the variable “address” can
be changed during program run-time. Symbeols, on the other hand, are
used to represent constants that are established at the time the program
is assembled.

The next field of the assembler directive contains the directive, or
pseudo-opcode. Like the mnemonics used in instructions, the directives
are shortened versions of a stated operation. For instance, the form
of the equate directive is EQU.

The third field of the assembler directive contains the argument. The
argument can be either a constant expression, a variable expression,
an address expression, or a character. The contents of this field are,
for a large part, dictated by the directive statement.

The last field in an assembler directive is the comments field. This
field is used for exactly the same purpose as the comments field in
the instruction statement.

The delimiters used in an assembler directive are slightly different from
those used with an instruction. The name field uses the same characters
and follows the same rules as the label field. However, the end delimiter
is not a colon. The end delimiter is a space character. The end delimiter
for the directive field is also a space character.

The argument field ends with a carriage return if there are no comments,
or a semicolon, if the comments field is used. Naturally the comments
field is ended with a carriage return.

Assembler Directives

MACRO-86 uses many assembler directives to control the translation
of instruction code. There are so many, in fact, that it isn’t practical
to cover them all at once. Therefore, we will introduce you to a core
of directives at this time, and then later, present the rest when their
use is required or more easily understood.

ORG

The origin directive allows you to specify an offset address value in
a program. For instance,

ORG 100H

dictates that the next instruction is located at memory offset address
100H.

2-16 | unTwo

Generally, it is considered poor programming practice to use the ORG
directive in a program. However, there is one time when you are com-
pelled to use the ORG directive. Command, or COM, programs must
begin at offset address 100H. MS-DOS uses those first 100H bytes for
“housekeeping” and program handling. Therefore, before you write any
code in a program that will be translated into a COM file, you must
use the ORG 100H assembler directive statement.

EQU

The equate directive allows you to associate a symbolic name to a
constant value or another symbolic name. The symbol itself is a word
or alphnumeric representation that you want to use in your program.
While it may not seem too important in a short program, consider what
could happen if you used a value ten times in a 1000-line program.
If, at some later time, you had to change the value, you might have
a hard time finding all of its occurrences. However, had you equated
that value to a symbolic name, you would have to make only one change
—the equate directive value.

Let’s see how that works. If you wanted to have the symbol FREEZE
equated to the value 32, you would write the directive as:

FREEZE EQU 32

Now if you use the symbol FREEZE in your program, the assembler
converts it to the value 32.

We also said you could associate one symbol with another. If for some
reason you wish to equate the symbol MELT with the symbol FREEZE,
you simply write the directive as:

MELT EQU FREEZE

Now both the MELT and the FREEZE symbols are associated with the
value 32. Thus, the instruction

ADD CX,FREEZE
or
ADD CX,MELT
would give the same results as the instruction

ADD CX, 32

Introduction to Assembly Language Programming 2"1 7

The define byte directive is used to allocate memory in byte-sized units.
The general format for this directive is

<var-name> DB <exp>[,<exp>,...]

where <var-name> is a legal variable name assigned to the define byte
statement, DB is the define byte directive, and <exp> is the value
expression for the defined byte of memory. Notice that the define byte
directive can associate one or more consecutive memory locations to
a variable name, by separating each expression with a comma. Natur-
ally, you are limited by the physical length of the statement line as
to the number of value expressions associated with the variable name.
However, you can append additional expressions by repeating the de-
fine byte directive without the variable name. For example,

PRODUCT DB 85,0FEH, 34H, 55, 45,0FFH, 0A4H, 22H, 44
DB OABH,0E4H, 35H, 147,23, 100, POUND

defines 16 consecutive bytes in memory and associates these bytes to
the variable name PRODUCT. We call this a table of byte-sized values.
The variable name PRODUCT is used to identify the offset address
of the first byte in the define byte statement. Thus, PRODUCT points
to the beginning of the table. '

Notice that all of the define byte value expressions are byte-sized. That
is, each value is 255 or less. When a symbol is used as a value expres-
sion, it must be equated to a byte-sized value. For that reason, the
symbol POUND, the last value expression in our example, must have
been equated earlier to a byte-sized value.

All of the values in the table PRODUCT are defined at assembly time.
Therefore, when the program is executed, the values are stored in mem-
ory beginning at the physical address identified by the base value in
the Data Segment register and the offset value assigned to the variable
name PRODUCT. During program execution, these values can then be
read or modified by the program instructions.

2'1 8 UNIT TWO

Often, there is a need to initialize a block of predefined byte-sized
values. A variation of the define byte directive statement lets you re-
serve and identify such an area in memory. A general form of the state-
ment is

<var-name> DB <exp> DUP (<exp>)

where <var-name> is again the statement offset address, and DB is
the directive. The argument in this statement is defined in this manner:
The first <exp> is a constant or symbol other than zero that specifies
the number of bytes in the block of memory. The operator DUP tells
the assembler that the expression enclosed in parentheses is to be dupli-
cated in each memory location. The expression enclosed in parentheses
can be a byte-sized constant or symbol. For example,

PRODUCT DB 20 DUP (33)

tells the assembler that a 20-byte block of memory is to be initialized
with the value 33 in each byte.

If you wish to initialize a block of memory, but you don’t want to
predefine the contents of that memory, then you would use the expres-
sion?. For example,

PRODUCT DB 20 DUP (7)

sets aside a 20-byte block of memory, but does not change the contents
of that memory.

One other type of data can be stored in memory using the define byte
directive — text characters. Have you ever wondered how the micro-
computer is able to display text? The text is stored in memory in a
coded form, and when needed, translated and displayed. The code used
to store the text, and many other characters and code for that matter,
is called ASCII (American Standard Code for Information Interchange).
Figures 2-5A and 2-5B show the code for the "control” commands,
alphanumeric characters, and special characters supported by ASCII;
and describe the commands supported by the code.

Introduction to Assembly Language Programming 2'1 9

COLUMN | 0®@ 1@ 2@ 3 4 5 6 7@
ROW 23'}? 765 D 000 001 010 o1 100 101 110 111
0 |---—c'og' NUL DLE SP 0 @ P . p
1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 ® 2 B R b r
3 0011 ETX DC3 # 3 c S c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E u e u
6 o110 ACK SYN & 6 F v f v
7 o111 BEL ETB * 7 G w g w
8 1000 BS CAN (8 H X h x
9 1001 HT EM) 9 | Y i y
10 1010 LF SuB . J z j z
1 1011 vT ESC + : K [K {
12 1100 FF FS A < L \ 1 :
13 1101 CR GS - = M] m }
14 1110 SO RS . > N ~—~m n ~
15 1M1 s us / ? o _@ o DEL

Figure 2-5A

Table of 7-bit American Standard Code
for Information Interchange.

2'20 UNIT TWO

NOTES:

(1)

(2)

(3)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT

LF

FF
CR
SO
SI

SP

Depending on the machine using this code, the symbol may be a
circumflex, an up-arrow, or a horizental parenthetical mark.

Depending on the machine using this code, the symbol may be an
underline, a back-arrow, or a heart.

Explanation of special control functions in columns 0, 1, 2, and 7.

Null DLE Data Link Escape
Start of Heading DC1 Device Control 1
Start of Text DC2 Device Control 2
End of Text DC3 Device Control 3
End of Transmission DC4 Device Control 4
Enquiry NAK Negative Acknowledge
Acknowledge SYN Synchronous Idle
Bell (audible signal) ETB End of Transmission Block
Backspace CAN Cancel
Horizontal Tabulation EM End of Medium
(punched card skip) SUB Substitute
Line Feed ESC Escape
Vertical Tabulation FS File Separator
Form Feed GS Group Separator
Carriage Return RS Record Separator
Shift Out US Unit Separator
Shift In DEL Delete
Space (blank)
Figure 2-5B

Continuation of the table of 7-bit American Standard Code
for Information Interchange.

Introduction to Assembly Language Programming 2'21

Notice that it takes seven bits to define one of the characters. For exam-
ple, the ASCII code for the letter F is 1000110B. As a general rule
of thumb, the eighth bit is considered zero. Therefore, to store the ASCII
code for the letter F in memory, you would use the define byte directive:

LETTER DB 01000110B
or
LETTER DB 46H

Looking-up the ASCII code for every letter in a message can be tedious.
To save time, you can have the assembler look up the proper code.
This is accomplished by enclosing the ASCII character within apos-
trophes or quotation marks. Thus, the define byte directive can be re-
written:

LETTER DB b
or
LETTER DB nge

Although you can use either apostrophes or quotation marks, you can-
not mix them in a directive statement. The statement

LETTER DB d DR

will generate an assembly error.

Another feature of the assembler’s handling of ASCII characters, is its
ability to generate the ASCII code from a character string. A character
string is a group of characters enclosed within apostrophes or quotation
marks. The define byte directive allows you to write a string of charac-
ters up to the length of the physical line. To continue the string, simply
write another statement on the next line as follows:

COMMENT DB 'This isanexample of acharacter'
DB 'string.’

When assembled, each character is assigned a consecutive byte in mem-
ory, beginning at the address offset assigned to the variable name COM-
MENT.

2‘22 l UNIT TWO

DW

The define word assembler directive is used to allocate memory in
word-sized units. The general format for the directive is

<var-name> DW <exp>[,<exp>,...]

where <var-name> is again a legal variable name assigned to the define
word statement, DW is the define word directive, and <exp> is the
word-sized value expression for the defined word of memory. One or
more expressions can be assigned to a variable name, with each expres-
sion separated by a comma.

The primary difference between the define byte and the define word
directives is the way the assembler treats the memory variable. Since
all memory locations are byte-sized, each defined byte value occupies
one memory location. Each defined word obviously can’t occupy one
memory location. Therefore, the assembler assigns two consecutive
memory locations to each defined word. For example, the instruction

NUM_ONE DW 45F3H

places the value 45F3H into the two memory locations assigned to the
variable name NUM_ONE — F3 in the low byte and 45 in the high
byte. This is an important concept to remember. The low byte of the
word is always stored in the low memory location, while the high byte
is always stored in the high memory location. Another way to look
at this is, the address pointed to by the variable NUM_ONE contains
the value 0F3H, while the address pointed to by the variable NUM_ONE
+ 1 contains the value 45H.

You can also store the code for ASCII characters with the define word
directive using any of the following methods:

DW i B
DW 'TE'
DW ’TE','ST',‘T‘.'HE','ﬁ'.’AT'.'ER'

The first statement stores the ASCII code for the character T in the
first memory location and zero in the next memory location. The second
statement stores the ASCII code for the character T in the first memory
location and the ASCII code for the character E in the second memory
location. The third statement stores the ASCII code for each character
in consecutive memory locations, with the low character byte in each

Introduction to Assembly Language Programming 2"23

expression preceding the high character byte. You cannot use the define
word directive to store a character string. Character strings can only
be stored using the define byte directive. The only way to store a string
of characters is by the method shown in the third statement. The charac-
ters must be stored a word-sized expression at a time.

You can also initialize a block of word-sized memory locations using
the DUP operator. For example,

STORE DW 20 DUP (34D7H)

tells the assembler that a 20-word block of memory is to be initialized
with the value 34D7H in each word. As explained earlier, D7 will be
stored in the first, or low, byte of the memory word and 34 in the
second, or high, byte.

Keep in mind, there is a limit to the size value that can be stored
in a word of memory. That limit is OFFFFH, 65535, or two ASCII charac-
ter codes.

END

The last directive used in a program is the END directive. It tells the
assembler that the program is complete. A typical END directive state-
ment would be

END <exp>

where <exp> identifies the starting address of the program. The first
instruction in the program must contain a label that matches the END
directive expression. For example:

START: ADD AX ,58E3H ;First program instruction

m START ;Programends here

The END directive expression START tells the assembler that the pro-
gram begins at the address offset assigned to the label START.

2'24 UNIT TWO

Self-Review Questions

9.

10.

11.

12,

13.

14.

15.

16.

The assembly language instruction statement consists of four
fields. These are:

A.
B.
C.
D.

Characters that are used to indicate the beginning and end of
the different fields in an instruction are called

Another term for opcode in an instruction is

An instruction statement can contain one, two, or three operands.

True/False

In addition to the letters A through Z and the numerals 0 through
9, the legal characters in a label or name include:

A.
B.
C.
D.

The assembler will recognize labels and names up to
characters long.

The assembler directive statement consists of four fields. They
are: '

A.
B.
C.
D.

Assembler directive statements are never translated into object

code.
True/False

Introduction to Assembly Language Programming 2'25

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

A name can assume one of two attributes: __________ or symbol.
Symbols represent
The end delimiter for a name is a colon.

True/False
The directive allows you to specify an address
offset value in a program.
The directive allows you to associate a sym-

bolic name to a constant or another symbol.

The directive is used to allocate memory
units to data storage.

The physical address of a variable is determined by adding the
variable offset to the shifted contents of the
register.

The operator is used to initialize a block of pre-
defined memory.

If the address offset assigned to the variable PRODUCT is 0100H,
the directive statement

PRODUCT DW OESA8H

will load the value at address offset 0100H and the value
at address offset 0101H.

The —______ directive is used to tell the assembler that the pro-
gram is complete.

2'26 UNIT TWO

OPERAND TYPING

Recall that operand types fall into three general categories: immediate,
register, and memory. These categories determine the method of ad-
dressing used by the instruction. With few exceptions, every 8088 MPU
instruction uses some form of addressing. We call those exceptions
inherent, or processor control instructions; that is, instructions that
affect the basic operation of the MPU. Examples of inherent instructions
are: halt (HLT), stop the MPU; and no operation (NOP), execute a
dummy instruction to waste time. Inherent instructions, because they
are MPU operation related, require no operands. Let’s examine the in-
structions that use operands, or at least, imply an operand in the in-
struction.

Immediate Operands

Within the instruction, operands indicate the source and the destina-
tion of the specified operation. From that perspective, an immediate
operand is always a source operand. As the source, it supplies a con-
stant value that is entered when the instruction is written. The value
may be either a data item or a symbol.

The default input value radix (number base) is decimal. Thus, any
numeric value entered without a base notation will be treated as a
decimal value. Naturally MACRO-86 also recognizes values in forms
other than decimal when the base notation is appended to the value.
For example,

11011010B Binary value

0F4EH Hexadecimal value
3509 Decimal value (default)
4690D Decimal value

473Q Octal value {letter Q)
3720 Octal value (letter O)

are the different value types that can be used with MACRO-86. Notice
that when the default value radix is not decimal, decimal values should
be identified with the base notation D.

Introduction to Assembly Language Programming 2"27

If you wish to change the default radix, use the assembler directive
.RADIX <exp>

where <exp> is the decimal value 2, 8, 10, or 16, The two move instruc-

tions
MOV BX,OFFH
.RADIX 16
MOV BX,OFF

are acceptable to the assembler, since the first was written when the
default radix was ten, and the second was written after the radix was
changed to sixteen. Remember, the radix directive only affects the con-
stant values specified after the directive.

There is, however, one exception to this rule. The default radix in a
define directive is always decimal, regardless of the radix specified
for the program code.

Another acceptable immediate data item is an ASCII character for a
byte-sized value or two ASCII characters for a word-sized value. For
example, '#’ is translated by the assembler to 00100011B (23H), while
'##’ is translated to 0010001100100011B (2323H). The apostrophes or
quotation marks enclosing the ASCII character(s) forces the assembler
to generate the appropriate ASCII code, one character per byte.

Symbols, as you will recall, are simply names equated to a numeric
constant. Using a symbol as an immediate value is the same as using
a numeric constant. Just remember to define the symbol before you
use it as an immediate value.

Since an immediate operand always assumes the position of the source
operand in the instruction, the destination operand, by default, must
be either a register or memory operand. Therefore, the instructions

NUM1 : MOV AX ,DATA
and
MOV PRODUCT, OF3E5H

are both considered immediate operand instructions even though the
destination for the operation is a register or a memory address. The
first is combined with a register operand, while the second is combined
with a memory operand. In the first example, DATA is a symbol name
for a constant. In the second example, PRODUCT is a variable name
that represents the logical, or offset, memory address where the constant
is to be stored.

2-28 | uniT TWO

Register Operands

An instruction is written in the register operand addressing mode if
both the source and destination operands of the instruction are regis-
ters. For example, the instruction

DATAL: ADD DX.SI

is a register addressing instruction. The contents of the source operand,
the SI register, is added to the destination, DX register, operand. If
prior to the operation, DX equaled 1111H and SI equaled 2222H, then
after the operation, DX will equal 3333H and SI will remain 2222H.
Remember, the destination operand is the only operand that is modified
by the instruction.

The 8088 MPU contains 14 registers. The Instruction Pointer is not
directly accessible through an instruction. The rest of the registers can
be operated upon by a number of different instructions. However, the
segment registers and the Flag register cannot be used as an operand
in arithmetic and logical instructions.

The four general registers, AX, BX, CX, and DX, are both 8-bit and
16-bit registers. Actually, the 16-bit general registers are composed of
a pair of 8-bit registers, one for the low byte (bits 0-7) and one for
the high byte (bits 8-15). Each of the 8-bit registers can be used indepen-
dently from its mate. In this case, each 8-bit register contains bits 0-7.
For example, the 16-bit accumulator register is called the AX register,
while its associated 8-bit registers are called the AL (for low byte) and
AH (for high byte) registers.

Although it is possible to use 8- or 16-bit registers in an instruction,
you must not mix the register sizes. It’s obvious that the contents of
a 16-bit register can’'t be moved into an 8-bit register. On the other
hand, you would think that it is possible to move the contents of an
8-bit register into a 16- bit register. The assembler, however, will reject
such an operation. You must keep the register sizes the same.

The register addressing mode is used when it is necessary to manipulate
operands within the MPU. By its very definition, this is the only possi-
ble time in which it could be used. Because the operation is performed
entirely within the MPU, the execution time is extremely fast; typically
2 to 3 clock cycles. Speed of execution is the primary advantage of
the register operand addressing mode.

Introduction to Assembly Language Programming 2'29

Memory Operands

Thus far, you have learned that it is possible to retrieve immediate
data and manipulate information within the MPU using register ad-
dressing. However, a program that uses only constants, and moves them
about in the MPU, will probably have a very limited value. In order
to accomplish any useful task with the microcomputer, you must have
a way of retrieving and storing information in memory locations other
than those occupied by the program. The 8088 MPU can do this in
a number of ways. The one we are going to discuss at this time is
direct memory addressing.

Direct memory addressing allows you to access specific areas in mem-
ory outside of the instruction stream. Our discussion of immediate ad-
dressing gave an example of direct memory addressing. The instruction

MOV PRODUCT, OF3ESH

moves the immediate value OF3E5H into the memory address assigned
to the variable name PRODUCT. By the same token, the instruction

MOV BX, PRODUCT

moves the contents of the memory address assigned to the variable
name PRODUCT into the BX register.

Recall that the physical address of PRODUCT is composed of two ad-
dress values. The first value is the logical, or offset, address for the
variable PRODUCT. This is the distance in bytes of memory from the
beginning of data segment. The assembler and linker determine this
offset. The second address value is determined by the contents of the
DS register. Thus, the physical address of PRODUCT is the contents
of the DS register, shifted left four bits, added to the address offset
calculated by the assembler and linker.

Just as register sizes must match in register addressing, so too must
the memory location and the register or immediate value size match.
You can’t write a word-sized value into a byte-sized memory location.
Although all memory is byte-sized, the assembler still determines how
the values in memory are treated. If you assign a word value to a mem-
ory location with a define word assembler directive, the assembler
treats the two addresses containing that word value as a word. It won't
let you write a byte value to that location. Likewise, it won’t let you
move a word-sized variable into a byte- sized register.

2-30 | unTTwo

Register sizes are fixed; either they are byte-sized or they are word-
sized. Data moved into a register must match the register size. This
is controlled by the MPU. Memory is physically byte-sized, but its atri-
butes (byte or word size) are controlled by the assembler. If the assem-
bler says an address variable is word-sized, the MPU will move two
bytes of memory if instructed. Since the atributes of memory are con-
trolled by the assembler, there should be a way to temporarily modify
those atributes in an instruction. There is, and it’s handled by an assem-
bler operator called a pointer (PTR). Assume the following conditions:

BYTE_.TAB DB *“Now is the time for all good people"
WORD.TAB DW '*C',OFF3FH, 25

The first statement defines a byte-sized table in memory containing
a string of characters. The second statement defines a word-sized table
in memory containing three constants. Now if you try to assemble the
instructions

MOV AX,BYTE.TAB
ADD WORD_TAB, BL

the assembler will generate an error message stating that the operand
types must match. However, if you add the operator PTR and specify
the operand type, the instructions will assemble properly. For example:

MOV AX,WORD PTR BYTE.TAB
ADD BYTE PTR WORD.TAB,BL

The first instruction moves the contents of the first two memory loca-
tions in BYTE_TAB into the AX register. The ASCII code for the letter
N (4EH) is stored in the low byte of the AX register, and the ASCII
code for the letter o (6FH) is stored in the high byte. The second instruc-
tion adds the contents of the BL register to the ASCII code for the
letter C (43H) stored in the first memory location in WORD_TAB. (Re-
member, the low byte of a word is always stored in memory before
the high byte. Thus, the ASCII code for the letter C is added to the
BL register rather than the ASCII code for the character * .)

It’s always a good idea to define data in the form that it will be used
by the program. Where this isn’t possible, use the assembler operator
PTR as described. Be sure to combine the operator with the operand
that must be temporarily overridden.

Introduction to Assembly Language Programming 2‘31

So far, we have described immediate data/memory operations and regis-
ter/memory operations. We haven’t discussed memory/memory opera-
tions. There is a good reason for that; you can’t transfer data from one
memory location to another. If you must perform a memory-to-memory
operation, then you have to temporarily store the data in an MPU regis-
ter. Thus you wind up with a memory-to-register- to-memory operation
using three separate instructions.

Self-Review Questions

27. Instructions that do not use some form of addressing are called
instructions.

28. Animmediate operand isalwaysa________ operand.

29. The default radix for an immediate operand constant is

30. You can change the default radix with the assembler directive

31. How many ASCII characters can be coded into a byte-sized mem-
ory location?

32. Can the register operand addressing mode contain an immediate

operand?
Yes/No

33. Of the 14 8088 MPU registers, the
register is not directly addressable

through an instruction.

34. The four general registers that are composed of two 8-bit registers
are:

1]

2'32 UNIT TWO

35,

36.

37.

38.

39.

Is the instruction
DATAL: ADD SI,BL

a legal operation?
Yea/No

The instruction
MOV AX, PRODUCT
will move the offset address of the variable PRODUCT into the

AX register.
True/False

If the offset address of the variable SUM is 0105H and SUM is
defined as a word-sized memory location, the instruction

MOV SUM, 3456H

will move the value 34H into the memory location at offset ad-
dress

If the DS register contains the value 0D20H, then the instruction
from question 37 will load the value 56H into the memory loca-
tion at physical address

The assembler operator —_________ will allow the contents of
two consecutive byte-sized memory locations to be loaded into
a 16-bit general register.

Data in one memory location can be transferred directly to

another memory location.
True/False

Introduction to Assembly Language Programming 2‘33

ARITHMETIC OPERATORS

Arithmetic operators are used to combine elements of an expression
to produce a single expression. For example, the instruction

MOV AL,PRODUCT+2 ;Source operand is offset plus 2

is a direct memory addressing instruction that moves the contents of
the third byte in the data block, identified by the variable PRODUCT,
into the AL register. The operator in this example is the plus sign.
It tells the assembler to add the value 2 to the offset address assigned
to the variable PRODUCT, to create a new offset address.

The arithmetic operators for MACRO-86 are:

+ Add

- Subtract or Negate
* Multiply

/ Divide

MOD Modulo

SHR Shift Right

SHL Shift Left

The first four operators act like their corresponding math functions.
However, the divide operator returns only the quotient. To determine
the remainder from a division operation, use the MOD operator. The
two shift operators are used to shift the binary value right or left the
specified number of bits. Let's see how each operator can be used.
In the following discussion, the symbol “FREEZE” represents an
equated value, while the symbols “PRODUCT” and “SUM” represent
the name of a data address offset.

MOV AX,16+34
MOV AX, 16 + FREEZE
MOV AX,PRODUCT +5

The add (+) operator in the first example causes decimal 50 to be
moved into the AX register. The second example moves the sum of
the constant 16 and the equated value of the symbol FREEZE into the
AX register. The last example moves the data stored in the memory
location five bytes past the offset address assigned to PRODUCT into
the AX register. If the offset is 0103H, then the memory location is
0103H + 5H = 0108H. The add (+) operator lets you combine con-
stants and/or symbols to produce a constant. It also lets you combine
a constant or symbol with a variable to produce a new variable. It will
not let you combine two variables. One final point — be sure that the
sum from your add operation doesn’t exceed the capacity of the destina-
tion operand.

2'34 _ UNIT TWO

MOV AX,-16

MOV AX,FREEZE-32
MOV AX, PRODUCT-3
MOV AX, PRODUCT-SUM

The subtract (—) operator in the first example causes the 2’s comple-
ment of the constant 16 (OFFFOH) to be moved into the AX register.
You can also use the subtract operator to negate symbols. The second
example moves the difference between the equated value of the symbol
FREEZE and the constant 32 into the AX register. As with all subtrac-
tion operations, the right value is subtracted from the left. The third
example moves the data stored in the memory location three bytes in
front of the offset address assigned to PRODUCT into the AX register.
If the offset is 0105H, then the memory location is 0105H — 3H =
0102H. The last example subtracts the offset address value assigned
to SUM from the offset address value assigned to PRODUCT and stores
the difference in the AX register as a constant. As with the add (+)
operator, the subtract (—) operator treats constants and symbols as con-
stants. If the subtrahend is larger than the minuend, the difference will
be stored in its 2’s complement form. The subtract operator can’t sub-
tract the offset address assigned to a variable from a constant or symbol.
It also can’t subtract one variable from another if they aren't in the
same memory segment.

MOV AX,32%5
MOV AX,FREEZE*5

The multiply (*) operator can only multiply constants and/or symbols.
If FREEZE is equated to 32, then both of the above examples are identi-
cal; the value 160 is moved into the AX register. Should the product
exceed the capacity of the destination, the assembler will generate an
error message.

MOV AX,32/5
MOV AX,FREEZE/5

Just like multiply (*), the divide (/) operator can only operate on con-
stants and/or symbols. Assuming FREEZE is equated to 32, then both
of the above examples will move the value 6 into the AX register. The
divide (/) operator ignores any remainder.

Introduction to Assembly Language Programming 2‘35

MOV AX,32 MOD 5
MOV AX,FREEZE MOD 5

If you are concerned about the remainder after a division operation,
then use the MOD operator. Both of the above examples move the re-
mainder from the division operation (2) into the AX register. Notice
that there is a space preceding and following the MOD operator. These
spaces must be used to make sure the assembler isn’t fooled into think-
ing the MOD operator is a symbol. While it isn't necessary, you can
precede and follow the other four operators with spaces. Quite often,
that makes the operation easier to read.

The last two arithmetic operators, shift right (SHR) and shift left (SHL),
give you the opportunity to rearrange the bit pattern in a byte or word
of data. Again, you must use constants or symbols to identify the data
and/or shift value. Following are examples of the shift operators:

MoV AL,00001100B SHR 2
MOV AX,11111100B SHR 4
MoV AL,00001100B SHL 2
MOV AX,11111100B SHL 10

Although we used binary values to show the value being shifted, you
can use any numeric base; the assembler automatically converts the
number to its equivalent binary bit pattern, and then shifts the pattern
the specified count. The operation is evaluated: <expression> shift
right or left <count>. Thus, in the first example, 00000011B (03H)is
moved into the AL register. The second example causes the number
0000000000001111B (000FH) to be moved into the AX register. Two
of the six one-bits are lost as the value is shifted right. In the third
example, the value 00110000B (30H)is moved into the AL register. The
last example moves the value 1111000000000000B (0F000H) into the
AX register. Again, two one-bits are lost when they are shifted out
of the usable range of the register.

Remember, 16-bit registers have a maximum capacity of 65,535
(OFFFFH) and every bit shift is equal to multiplying the value being
shifted by two. 8-bit registers are a different story. If you exceed the
capacity of an 8-bit register, with a shift-left operation, the assembler
will first assume you are creating a 16-bit value, then it will realize
its error and generate an error message.

2'36 _ UNIT TWO

Early versions of the IBM-PC MACRO-86 assembler handle the shift
operations a little differently than specified in the “Macro Assembler”
owner’s manual. First, the shift-right operation always returns the value
zero, whether an 8-bit or 16-bit register is involved. Second, the shift-
left operation is evaluated the reverse of the expected sequence. It is
evaluated: <count> shift-left <expression>. Thus, the instruction

MOV AX,4 SHL 11111111B

moves the value 0000111111110000B (0FFOH) into the AX register. Be-
fore you use the shift arithmetic operators with IBM’s MACRO-86 as-
sembler, carefully test their response to determine whether or not they
follow standard MACRO-86 convention.

The arithmetic operator expressions evaluate left to right and in a spe-
cific level of precedence. The operators: *, /, MOD, SHR, and SHL are
equal in level of precedence and higher than the operators + and —.
Therefore, *, /, MOD, SHR, and SHL will be evaluated before + or
—. Where the level of precedence is equal, they evaluate left to right.
Entries within parentheses have the highest level of precedence. For
example:

MOV AX,10+70 MOD FREEZE ;FREEZE = 32, AX = 16

MOV AX,101B SHL 2x*2 ;AX = 0028H
MOV AX,101B SHL (2#2) ;AX = 0050H
MOV AX,6+5*2-8/4 JAX = 14
MOV AX,b(6+5*2-8)/4 ;AX = 2
MOV AX, (6+5)*2-8/4 ;AX = 20

Introduction to Assembly Language Programming 2"37

Self-Review Questions

41. Name the seven arithmetic operators.

42. The add (+) and subtract (—) operators can be used with con-

stants, symbols, and variables.
True/False

43. Subtracting a constant from a variable produces a
44, Subtracting a variable from a variable produces a

45. The 2's complement is produced using the
operator.

46. The multiply (*) and divide (/) operators can be used with con-

stants, symbols, and variables.
True/False

47, The________ operator returns the quotient.

48. The assembler allows the shift-left operator to generate a value

that exceeds the capacity of a register.
True/False

49, The instruction
VALUE: MOV AL,11B SHL ((5%*2-20/3) MOD 5)

moves the value into the AL register.

2-38 | unirTwo

PROGRAM SEGMENTATION

One of the primary features of the 8088/8086 family of MPUs is their
use of memory segments to partition a program into specific groups
of program code and data. This section will show you how the assem-
bler is directed to create these program segments.

Logical Program Segmentation

With MACRO-86, a program is organized into a series of named seg-
ments. Recall that segmentation of memory was described in the first
Unit. However, in the program context, the segments are “logical” seg-
ments; that is, they are not assigned physical addresses in the assembly
language program. For that reason, programs written in MACRO-86 con-
tain what we call relocatable code. This means that after these programs
are assembled, they can be loaded practically anywhere in memory
and executed.

Naturally, once the program is loaded into memory, the segment regis-
ters must be loaded with specific values in order to produce the phys-
ical addresses used by the program. That is primarily a function of
the program loader in MS-DOS.

Segmentation Assembler Directives

Three assembler directives are used to set up the logical segments in
an assembly language program. A description of each follows:

SEGMENT — At program run-time, every instruction and data item
must reside within a segment. The segment directive defines the seg-
ment beginning. A name is used to identify the segment. When the
program is assembled, linked, and loaded into memory, that name is
used to assign a value to one or more segment registers.

Introduction to Assembly Language Programming 2"39

Each SEGMENT name must be unique to the program, contain legal
characters, and not be a reserved word. Reserved words are words that
are used by the assembler to identify registers, directives, or operations.
For example, the words SEGMENT, AX, MOV, and ORG are considered
reserved words. If you should use a reserved word by mistake, the
assembler will tell you with an error message.

A program can contain one or more segments. You can group segments
together before the program is assembled, or you can “link” a number
of preassembled segments together with the linker.

ENDS — This directive identifies the end of the segment. The ENDS
directive name must match the beginning SEGMENT name.

All data and instructions written between SEGMENT and ENDS are
part of the named segment. In small programs, variables often are de-
fined in one or two segments, stack space is allocated in another seg-
ment, and instructions are written in a third or fourth segment. It is
perfectly possible, however, to write a complete program in one seg-
ment. If this is done, all the segment registers will contain the same
base address. Command, or COM, programs use this method of segment
arrangement. Large programs may be divided into dozens of segments.

The segment directives SEGMENT and ENDS take the form
<seg—name> SEGMENT
5 progrl'am segment

<seg-name> lENDS
where <seg-name> is a name unique to that segment.
ASSUME — Recall that at program run-time, every memory reference

requires two components in order to be physically addressed by hard-
ware:

A. A 16-bit segment base value that must be contained in one of
the four segment registers (Code, Data, Stack, or Extra), and

B. a 16-bit logical, effective, or offset address giving the offset to
the memory reference from the segment base value.

2'40 UNIT TWO

The ASSUME directive builds a symbelic link between your assembly-
time placement of instructions and data in logical segments (between
SEGMENT/ENDS pairs) and the run-time event of physically addressing
instructions and data in memory through segment registers. In other
words, ASSUME is a “promise” to the assembler that instructions and
data are run-time addressable through certain segment registers.

The assembler checks each memory instruction operand, determines
which segment it is in, and which segment register contains the address
of that segment. If the assumed register is the register expected by the
MPU for that instruction type, then the assembler generates the instruc-
tion code in the normal manner. If, however, the MPU expects one
segment register to be used, and the operand is not in the segment
pointed to by that register, then the assembler automatically precedes
the machine instruction with a segment override prefix byte. This pre-
fix tells the MPU which segment register should be used for the base
address in its address computation. (If the segment cannot be overrid-
den, or determined, the assembler generates an error message.)

The format for the ASSUME directive is:
ASSUME <seg-reg>:<seg-name>|,...]

ASSUME requires two arguments separated by a colon to identify a
segment. The first argument selects a segment register: CS, DS, SS, or
ES. The second argument specifies the segment name associated with
that segment register. The argument pair can be repeated up to four
times in an ASSUME directive — once for each segment register. For
example:

TEST SEGMENT
ASSUME CS:TEST,DS:TEST, SS: TEST, ES: TEST
:progrﬁm segment

TEST ENDS

Introduction to Assembly Language Programming 2'41

The program segment is named TEST, and all four segment registers
are referenced to TEST. Thus, each segment register is assumed to con-
tain the same segment base address. Because of this, the offset address
value for every instruction or data item is referenced to the same seg-
ment base value. This is the arrangement commonly found in com-
mand, or COM, programs.

At this time, you should remember that every program must contain
at least one SEGMENT, ASSUME, and ENDS directive. Naturally, where
there are multiple program segments, there must be at least one SEG-
MENT and one ENDS directive for each segment. You only need one
ASSUME directive, but you can add more if you must change a segment
register reference in the program.

It isn’t necessary to identify a segment register if it isn’t used in a
program. If you don’t, the assembler will assume the register doesn’t
exist. However, for COM programs, we recommend that you make it
a habit to always identify at least the CS, DS, and SS registers rather
than take a chance on forgetting one when it is needed. The ES register
is seldom used in COM programs.

Initializing The Segment Registers

Earlier, we said that the segment register values are determined by the
MS-DOS program loader, when the program is loaded into memory.
The program loader determines what area of memory is available for
program use, and then loads the program into the bottom, or low ad-
dress area, of that memory. The program loader then loads the CS and
IP registers with the base and offset address for the first instruction
in the program.

In COM-type programs, the program loader also stores the value in
the CS register into the DS, SS, and ES registers. Naturally, only those
registers that are identified in the ASSUME directive are loaded. That,
however, isn’t the case in EXE-type programs. You, as the programmer,
must load the appropriate base addresses into the DS, SS, and ES regis-
ters. Figure 2-6 is a partial listing of a program to show you how the
registers should be loaded.

2‘42 UNIT TWO

PROG_STK SEGMENT STACK
i 7] 1ee DUP (?) 1100 word stack area
PROG_STK ENDS
PROG_DATA SEGMENT
DATAL DB 200 DUP (7) jReserve 200 bytes memory
DATA2 DW 50 DUP (?) sReserve 58 words memory
PROG_DATA ENDS
PROG SEGMENT
ASSUME CS:PROG, D5: PROG_DATA, $S:PROG_STK,ES:PROG_DATA
START: MOV AX,PROG_STK ;Get stack base address
MoV SS, AX jLoad in Stack register
MOV AX,FROG_DATA ;Get data base address
MOV DS, AX ;Load in Data register

MOV ES,AX jLoad in Extra register
;Program instructions here

PROG ENDS
END START

Figure 2-6
Partial listing of a typical EXE-type program.

The ASSUME directive indicates that all Code Segment references will
be made to the segment named PROG. By the same token, Data and
Extra Segment references will be made to the segment named
PROG.DATA, while Stack Segment references will be made to the seg-
ment named PROG_STK. These references are established by the assem-
bler. The assembler also calculates the length of each segment. The
linker then combines the segments so that when they are loaded, they
will occupy consecutive bytes in memory: code segment first, followed
by the data and extra segments, and finally, the stack segment. With
the program loaded into memory, each segment name is assigned a
base value, referenced to the Code Segment register contents. Therefore,
the first instruction in the program,

START: MOV AX, PROG.STK :Get stack base address

takes the value assigned to the name PROG_STK and moves it into
the AX register. This is similar to the “move symbol name” instruction
described earlier. PROG_STK is a symbol representing the base address
of a program segment.

Notice that the value is not moved directly into the SS register. The
process takes two instructions. First, the value is moved into the AX
register; and then, the value is moved from the AX register into the
SS register. This is necessary since there is no instruction that allows
a direct move into a segment register.

Introduction to Assembly Language Programming 2‘43

The process is repeated for the Data and Extra Segment registers. First
the base address for the segment assigned to data is moved into the
AX register. Then, the contents of the AX register is moved into the
Data and Extra Segment registers, since they both will reference the
same program segment.

Now you may be wondering why the loader can't load the segment
registers when the program is moved into memory, as it did with the
COM program, since it knows the base value for each segment. To an-
swer that question, you have to remember the one important difference
between COM and EXE programs: COM programs have only one pro-
gram segment, therefore the base values can’t change; EXE programs,
on the other hand, can have any number of program segments. There
may be three or four data segments, stack segments, or even code seg-
ments. The loader has no way of determining which program segments
you wish to use first. Therefore, it leaves that decision up to you. You
must supply the program instructions to load the registers. Just re-
member, the only segment registers you have control over are the DS,
SS, and ES registers.

If you have no control over the CS register contents, and you link two
or more code segments into a program, how is the segment containing
the first instruction identified? Remember the program END directive?
You can only have one END directive in a program. The argument
to that directive points to the first instruction in the appropriate code
segment. This information is used by the linker to arrange the code
segment placement.

Did you notice that we introduced a variation in the SEGMENT direc-
tive? In the directive statement

PROG.STK SEGMENT STACK

the argument STACK identifies the segment as the stack segment. You
must identify the stack segment in an EXE program, or the program
may not run properly. The linker will tell you if you forget to use
the argument STACK in one of the SEGMENT directives in an EXE
program. On the other hand, never use the argument STACK in a COM
program. The EXE to COM conversion won’t work.

2-44 | unirtwo

Self-Review Questions

50.

51.

52,

53.

54.

55.

56.

57.

58.

59,

60.

The assembler assigns physical addresses to the program seg-

ments.
True/False

The assembler directive —__ defines the beginning of
a program segment.

The assembler directive defines the end of a pro-
gram segment.

The name SEGMENT_DATA is considered a reserved word.

True/False

You are limited to four segments in a COM program.
True/False

The ASSUME directive requires two arguments separated by a
colon: they are and

If you use three SEGMENT directives in a program, the minimum
number of ENDS directives is | while the minimum
number of ASSUME directives is

You can use as many SEGMENT and ENDS directives as you

feel is necessary in a COM program.
True/False

When an EXE program is loaded into memory, all of the segment
registers are automatically loaded with the appropriate base ad-

dress values
True/False

If you have assigned the name DATA1 to the program segment
that will contain the program variables, what are the two instruc-
tions that you should use to load the DS register with the appro-
priate base address value?

If you forget to add the argument STACK to the program segment
in a COM program, will the EXE to COM translation program

work?
Yes/No

Introduction to Assembly Language Programming I 2"45

EXPERIMENT

An Introduction to
Assembly Language Programming

OBJECTIVES: 1. Demonstrate a typical COM program

structure.

2. Review the assembler directives in-
troduced in the Unit.

3. Demonstrate three MPU addressing
modes.

4. Review the files generated in the as-
sembly and linking process.

5. Demonstrate the assembler arithmetic
operators.

Introduction

We’ve introduced you to a great number of new concepts in this Unit.
While you should be able to define or describe each of these concepts,
you may not have a firm understanding of what they should or can
do for you. That is the point of this experiment. It will review the
material presented in the unit, giving you the opportunity to write and
exercise many assembly language programs.

We will, however, limit the examples in this experiment to COM pro-
grams. EXE programs will be demonstrated at a later time.

Procedure

1. Call up your editor and enter the program listed in Figure 2-7.
We suggest you use a file name that relates to what you are writ-
ing, such as PROG1.ASM, to represent the first assembly language
program in the experiment. All of our references to the program
will use the name PROG1.

You can include the program comments, or leave them out. We
listed them to help you follow the program steps. Right now com-
ments aren’t that important; however, when you begin writing
longer programs, comments are indispensable for reminding you,
and others, why you used a particular set of instructions.

2'46 UNIT TWO

TITLE EXPERIMENT 1 -~ PROGRAM 1 -~ COM PROGRAM FUNDAMENTALS

COM_PROG SEGMENT ;Beginning of program segment
ASSUME CS:COM_PROG, D5: COM_FROG, SS: COM_PROG
L]
VALUE EQU 33 ;Equate a value to a symbol
ORG 100H 3COM programs always start here
START: MOV AX, VALUE sStore the immediate value in AX,
ADD AX,33 ;then, add the immediate value to AX
MoV BX, VALUE ;Store the immediate value in BX,
ADD BX,33 jthen add the immediate value to BX,
SUB AX,BX sfinally, subtract BX from AX
MOV AX,DATA1 ;Store the data in memory into AX
ADD AX, DATA2 yAdd more data to AX
MoV SUM, AX jStore the sum in memory
SUB AX, AX ;Clear AX
INC AX ;Add 1 to AX
DEC AX ;Subtract 1 from AX
1
DATA1 DB 33,0 iPlace 2 byte-sized values in memory
DATAZ DM VALUE jPlace word-sized value in memory
SUM DB 2 DuP (?) jReserve but don’t initialize 2 memory bytes
COM_PROG ENDS 1End of program segment
END START ;End of program, point te first instructien
Figure 2-7

Listing of first assembly language program.

Notice in the program listing that the first line contains a new
assembler directive. The directive is TITLE. It allows you to iden-
tify a program by giving it a title. The assembler uses the title
in its assembled program source listing as an identification header
on each page of the listing. You can use up to 60 printable charac-
ters in a title. However, we suggest that you always make sure
you use the legal characters, described for labels and names, in
the first six character positions in the title. This is to ensure that
the linker will always have valid characters to work with when
it performs some of its multiple segment linking duties.

Refer to Figure 2-8 and assemble the program. The following steps
will allow you to create the program object file, listing file, and
cross- reference file.

Introduction to Assembly Language Programming 2'47

A:MASM PROG1
The Microsoft MACRO Assembler
Version 1.97, Copyright (C) Microsoft Inc. 1981,82

Object filename [PROGL.OBJ1:
Source Tisting [NUL.LSTI: PROG1
Cross reference INUL.CRF1: PROGH

018E Al Q1IC R MOV AX, DATAL ;Store the dataX
Error =-—, 3110perand types must match
0115 A3 Q120 R MOV SUM, AX sStore the sum y
Error -— 31:0perand types must match

Warning Severe
Errors Errors
"] 2

A:

Figure 2-8
Assembling the first assembly language program.

A. Type the command “MASM PROG1” (assuming PROG1 is the
file name) and RETURN.

B. The assembler will print a program heading and version number,
and then the statement “Object filename [PROG1.0B]J]:”. It is ask-
ing if you want the object file to be called PROG1.0B]J. You do,
so press RETURN.

C. The assembler will print the statement “Source listing
[NUL.LST]:”. NUL means there will be no listing if you press
RETURN. You want a listing, so type “PROG1” and RETURN.
(The assembler will automatically add the extension LST.)

D. The assembler will print the statement “Cross reference
[NUL.CRF]:”. Again, NUL indicates there will be no cross refer-
ence file if you press RETURN. You want the file, so type
“PROG1” and RETURN. The assembler will process the program,
generate the files you requested, and display any error messages.
If you wrote the program as it is listed in Figure 2-7, you will
have two errors in your program.

2'48 UNIT TWO

The Microsoft MACRO Assembler

@1-20-84 PAGE i-1

EXPERIMENT 1 -- PROGRAM 1 -- COM PROGRAM FUNDAMENTALS

~0

18
i1

12

17
18

19
20

21

23
24

26

27

r

¢

r

0

0

0000

0199 B2 0021
0103 05 0021
9leé BB 0021
0107 83 C3 21
elec B C3

@1E Al @1IC R

TITLE EXPERIMENT 1 -- PROGRAM 1 -- COM

PROGRAM FUNDAMENTALS

i
COM_PROG SEGMENT
ing of program segment

;Beginn

ASSUME CS:COM_PROG, DS:COM_PROG

,55:COM_PROG

L]
VALUE EQu 33
a value to a symbol
ORG 100H
ograms always start here
START: MOV AX, VALUE
the immediate value in AX,
ADD AX,33
add the immediate value to AX
MOV BX, VALUE
the 1mmediate value 1n BX,

ADD BX,33
dd the immediate value to BX,
SUB AX,BX

y, subtract BX from AX
MoV AX,DATAL
the data in memory into AX

r - 31:0perand types must match

0111 @2 04 BIIER

0115 A3 0120 R

ADD AX,DATAZ
re data to AX

MOV SUM, AX
the sum in memory

[31:0perand types must match
0118 2B Ce SUB AX, AX
AX
Q11A 49 INC AX
to AX
@11B 48 DEC AX
ct 1 from AX
L)
811C 21 0@ DATA1 DB 33,0
2 byte-sized values in memory
011E @021 DATAZ DHW VALUE
word-sized value in memory
0120 02 [SUM DB 2 DUP (?)
¢ but don’t initialize 2 memory bytes
27
0122 COM_PROG ENDS
program segment
END START

program, point to first instruction

Figure 2-9

Source listing of the first program.

;Equate
sCOM pr
1Store
j then,
1Store
sthen 2
sfinall

;Store

;Add mo

1Store

sClear
sAdd 1

sSubtra

1Place
jPlace

jReserv

;End of

;End of

Introduction to Assembly Language Programming 2'49

Figure 2-9 shows part of the listing for the program you just as-
sembled. Note that the errors involve the sixth (line 13) and eighth
(line 15) instructions. In both cases, the operand types don’t
match. Examine your program listing to see if the errors are the
same. Type “TYPE PROG1.LST” and RETURN. The program list-
ing will scroll rapidly up the screen. To stop the scrolling action,
hold the CTRL key down and press the S key. To restart the
scrolling action, press one of the character keys or the space bar.
Stop the scrolling action when both errors are visible. Why do
you think those instructions didn’t assemble properly?

If you said that the instructions were mixing byte-sized memory
with word sized registers, you are right. What can be done to

correct those two instructions? Write the corrected instructions
below.

Figure 2-10 shows the assembly language program with the sixth
and eighth instructions corrected so they will assemble properly.
In both cases, the addition of the assembler operator WORD PTR
resolved the conflict. Notice that the operator is used with the
operand that must be redefined. Naturally, it’s always best to as-
sign a variable size to match the data that will be used with that
variable. Where that isn't possible, use the appropriate PTR
operator in the instruction.

2-50 [unirtwo

TITLE EXPERIMENT 1 -- PROGRAM { -- COM PROGRAM FUNDAMENTALS

1
COM_PROG SEGMENT ;Beginning of program segment
ASSUME CS:COM_PROG, DS:COM_PROG, SS:COM_PROG
]
VALUE EU 33 ;Equate a value to a symbol
ORG 100H ;COM programs always start here
START: MOV AX, VALUE ;Store the immediate value in AX,
ADD AX,33 sthen, add the immediate value to AX
MOV BX, VALUE ;Store the immediate value in BX,
ADD BX,33 sthen add the immediate value to BX,
SUB AX,BX ;finally, subtract BX from AX
MOV AX,WORD PTR DATA1 ;Store the data in memory into AX
ADD AX,DATAZ jAdd more data to AX
MoV WORD PTR SUM,AX ;Store the sum in memory
SUB AX, AX ;Clear AX
INC AX sAdd 1 to AX
DEC AX 1Subtract 1 from AX
]
DATA! DB 33,0 sPlace 2 byte-sized values in memory
DATAZ DM VALUE ;Place word-sized value in memory
SuM DB Z DUP (?) sReserve but don’t initialize 2 memory bytes
COM_PROG ENDS ;End of program segment
END START ;End of program, point to first instruction
Figure 2-10

Corrected listing of the first assembly language program.

Call up your editor and modify the sixth and eighth instructions
to match those in Figure 2-10.

Assemble the program following the sequence described in the
second step of this experiment. Don’t worry about deleting the
files generated in the first assembly, each old file will be deleted
as the new file is stored on the disk.

The one file that isn’t deleted immediately, is the ASM file. When
you use the Editor to modify a file, the original file is saved,
just in case you make a mistake. The saved file is identified by
the file extension BAK. If you need to use the BAK file, simply
change the file extension back to ASM, using the MS-DOS RE-
Name command.

The first file produced by the assembler is the object file
PROG1.0B]J. This is the file that contains the machine level code.
However, the code is not complete; there are a few references
that must be resolved by the linker. Because the object file con-
tains machine code and not ASCII code, you can't display the
code with the MS-DOS TYPE command.

Introduction to Assembly Language Programming 2"51

m\‘ The Microsoft MACRO Assembler

B

1

2
3

-

o w

1@
11
12
13
14
15
16
17
18

19

21

RARY

EXPERIMENT | -- PROGRAM 1 -- COM PROGRAM FUNDAMENTALS

11-23-83 PAGE 1=1

(

TITLE EXPERIMENT 1 -- PROGRAM 1 -- COM
PROGRAM FUNDAMENTALS

COM_PROG SEGMENT

2000 1Beainn
ing of program segment
ASSUME CS:COM_PROG, I'S: COM_PROG
,55:COM_PROG
092 E \.'MLUE EQU ' 33 Equat
= jEquate
. E a value to a symbol 1
me& “ ORG 100H ;COM pr
I ograms always start here
0100 B8 0021 START: MOV AX, VALUE yStore
the immediate value in AX,
0193 @5 o621 ADD AX,33 i then,
add the immediate value to AX
0106 BB 6021 MOV BX, VALUE ;Store
the immediate valuve in BX,
e1ey 83 C3 21 ADD BX,33 jthen a
dd the immediate value to BX,
e1eC 2B CS/H SUB AX, BX ;finall
..l y, subtract BX from AX
Q10E Al O1IC R MOV AX,WORD PTR DATAL ;Stor
¢ the data in memory into AX
0111 83 96 O11E R ADD AX,DATA2 3Add mo
re data to AX
115 A3 0120 R MOV WORD PTR SUM,AX jStore
the sum in memory
0118 2B Co SUB AX,AX ;Clear
AX
011A 40 INC AX §Add 1
to AX
011B 48 DEC AxX 1Subtra
ct 1 from AX
— i
011C 21 00 DATAl DB 33,0 sPlace
2 byte-sized values in memory
011E @021 DATAZ DM VALUE ;Place
- word-sized value in memory
0120 0z [SUM DB 2 DUP (2} ;Resery
e but don’t initialize 2 nuorgTbgtes
??
a
8122 COM_PROG ENDS sEnd of
program segment
END START ;End of
program, point to first instruction
Figure 2-11

Source listing of the corrected first program.

2-52 | unrtwo

The next file produced by the assembler is the source listing
PROG1.LST. This file can be displayed. Figure 2-11 shows the
source listing of your program. In addition to supplying a copy
of the assembly language code, it also gives the machine code
representing each instruction, and the relative address for each
byte of code and data within the program. You can use the TYPE
command described earlier to view your program listing. The var-
ious areas of the listing in Figure 2-11 are identified with letters
to match the following description.

A — The first line of the file identifies the assembler, prints the
date assigned to the file, and a double page number. The number
to the right advances with each new page of code. The number
on the left advances only when told to do so, with the assembler
directive PAGE +. When the assembler encounters the directive
PAGE +, a new listing page is started, the number on the left
is incremented, and the number on the right is reset to 1. In this
manner, you can identify a new section or segment when you
print the listing, since each PAGE + directive will also start a
new page.

B — The second line in the file is the title line. This is repeated
on every page of your program. If there is no TITLE directive
in your program, the line is left blank.

C — This area of the listing is a copy of the original assembly
language program. Because the column is only 47 characters
wide, any line that is longer than 47 characters is “wrapped
around” to the next line. That can make the code tricky to read,
but everything is there.

D — The far left column in the listing contains the program line
numbers. Each line is assigned a number to make future debug-
ging easier. This will make more sense when we describe the
cross-reference file. Note that the line numbers are not displayed
if the CRF file is not generated. Also, the line number feature
(in some assemblers) is ""turned-off” if the first line of the program
is left blank.

Introduction to Assembly Language Programming 2"53

E — The offset value 0000H serves as a reminder that this is
the beginning of a segment. Every SEGMENT directive has that
value assigned to it. The ENDS directive is assigned a number
that represents the offset from the beginning of the segment to
the last byte in the segment. The offset in this example is 122H;
there are 22H bytes of code and data, and the program begins
at offset 100H.

Notice that we used hexadecimal notation for all of the values
in the preceding paragraph. This is because all numbers on the
left side of the listing (except for the line numbers) are hexadeci-
mal by default. Thus, there is no reason for the assembler to ap-
pend the letter H to each number. The numbers used on the right
side of the listing assume the default radix of the program.

F — The number on the left is the equated value of the number
on the right. Every equated value is easy to spot, because it is
preceded by an equals sign.

G — Recall that every COM program must begin at offset address
100H. The number on the left identifies the offset value specified
by the ORG directive in the program. This is emphasized by the
offset address of the following instruction.

H — This column lists the offset address of the first byte of every
instruction or data definition in the program. For example, the
first instruction begins at offset 0100H, the beginning of the pro-
gram. The next instruction begins at offset 0103H, four bytes from
the beginning of the program. This is because the first instruction
is three bytes long. Since all code and data is referenced from
the same segment base address, the first byte of data occupies
the next consecutive offset address following the last byte of in-
struction code. In this case, the last instruction is a single-byte
instruction at offset 011BH (line 18); the first byte of data is lo-
cated at offset 011CH (line 20). Line 19 contains no code or data;
it contains a semicolon, which is ignored by the assembler. You
may have noticed that the program listing includes three lines
that contain only semicolons. This is a common practice to help
identify, or segregate, different areas of a program.

2-54 | unitTwo

I — Instructions and data machine code are located in this col-
umn. For example, the first instruction moves the immediate
value 33 into the AX register. The instruction code is hexadecimal
B8, while the word-sized immediate value is hexadecimal 0021.

Keep in mind that the machine code in this column is in hexadec-
imal. A two-digit number group equals a byte-sized value, while
a four-digit number group equals a word-sized value.

] — A memory operation is represented a little differently. In
the example indicated, data located at the address offset iden-
tified by the variable DATA1, is moved into the AX register. The
first byte-sized value is the machine code for the move instruc-
tion. The next word-sized value represents the address offset to
the byte of data to be moved. The R following the offset is an
indicator, or flag, to the linker that it must verify and/or modify
the offset value to accomplish the memory move operation. In
this simple COM program, the offset won’t be changed by the
linker. However, in a program with multiple segments, the offset
from the segment register base address value may change when
the segments are linked.

K — Data is represented as it is defined. In the first define byte
statement (line 20), two bytes of data, 33 and 0, are defined. The
machine code column shows the data as hexadecimal 21 and
00. When the symbol VALUE is defined as a word (line 21), it
is shown as hexadecimal 0021.

L — Adding the DUP operator to a define statement changes the
way the data is represented in the machine code column. The
number of bytes or words being defined is specified first. Then,
the expression being duped is shown enclosed within brackets.
The expression is vertically isolated from the brackets to make
it easier to identify. When the expression is undefined, as in this
example, question marks are displayed — two for a byte-sized
value and four for a word-sized value. Defined values are shown
in their hexadecimal equivalent.

Introduction to Assembly Language Programming 2‘55

10. There is another part to the program source listing; it is called
the Symbol Table. It serves as a programming aid for determining
how the program is structured with regard to the various labels
and names assigned to that program. Figure 2-12 shows the sym-
bol table for your program.

M—b The Microsoft MACRO Assembler 11-23-83 PAGE Symbols
=
m——E!PERII‘ENT 1 -- PROGRAM 1 -- COM PROGRAM FUNDAMENTALS

E—-—Segnenti and groups:

Name Size align combine class
COMPROG « « o ¢ ¢ o o « o 4 « o 0122 PARA NONE
m——Sgnbols
Name Type Value Attr
DATAL. = & o s = & o o = 5 & 6 » L BYTE o1iC COM_PROG
DATAZ. » o m w » om0 w wim w m e L WORD @11E COM_PROG
START: o i & & 5l & o Wi o = . L NEAR 0100 COM_PROG
BN & v o mw o w om m w ee L BYTE 0120 COM_PROG Length
=0002
VALUE: & s.0 0 500 o 00 &0 2 Number 0021
E—»Harhing Severe
Errors Errors
'] 9
Figure 2-12

Symbol Table listing for the first program.

2-56 | uniTTwo

A — The first line of the display is similar to the program listing.
Instead of numbering individual program sections, the PAGE is
called "Symbols.” The page count is maintained on the next line.

B — The program title is placed on this line, if the program is
titled.

C — This section identifies the program segments and groups.
Your program contains one segment. The segment is called
COM_PROG.

Size indicates the size of the segment. This is not necessarily
the number of program bytes, but rather the number of bytes from
the beginning to the end of the segment. While your program
contained only 23H bytes, it is originated at address offset 100H.
Therefore the segment is 122H bytes long.

Align (alignment-type) is a term that specifies how the program
is to be loaded into memory. PARA is the default alignment-type
that stands for paragraph alignment. This specifies that the seg-
ment begins on a paragraph boundary — the address is divisible
by 16. That is, the least significant hexadecimal digit of the ad-
dress equals OH. There are three other alignment-types:

BYTE — Specifies that the segment can begin anywhere.
WORD — Specifies that the segment can begin at

any even address.
PAGE — Specifies that the segment can begin at

any address that is divisible by 256.
That is, the two least significant hexa-
decimal digits of the address equal 00H.

Nonparagraph alignment types should only be used with multi-
ple-segment programs. This tells the assembler how to sequence
the code and data. An example of a SEGMENT directive that
uses an alignment-type argument is:

COM_.PROG SEGMENT PAGE

This tells the assembler that the segment COM_PROG must begin
at an address divisible by 256. Thus, if the preceding segment
only occupies the first 36H address locations, COM_PROG will
still begin at offset address 100H. We will use the default align-
ment-type paragraph in our COM programs.

Introduction to Assembly Language Programming l 2"57

Combine and class also assign specific characteristics to a seg-
ment during the linking process. Since these characteristics are
unique to multisegment programs we will describe their functions
at a later time.

D — This section lists all of the labels, variables, and symbols
used in your program. Each column following the label or name
describes specific characteristics for that label or name.

Type identifies the name. The letter L indicates it is a label (label,
symbol, variable). The terms BYTE and WORD indicate the length
of the variable, while the terms NEAR or FAR indicate the relative
distance from the label to the instruction or directive that refer-
ences the label. Distance is an important characteristic with the
8088 MPU. Near operations occur within the boundary of a seg-
ment. Far operations occur over distances that cross the boundary
of a segment. The last type is number. This is always used in
conjunction with symbols.

Value can assume two characteristics: number or offset. Numbers
relate to symbols. Address offset values relate to labels and vari-
ables.

Attr (attribute) always shows the segment assigned to the label
or variable. If a DUP operator is used with a define directive,
the DUP "count” is shown as a length. In your program, the vari-
able SUM contained a DUP statement with a count of two. No
attribute is assigned to a symbol, since a symbol is simply a value
not related to a segment.

E — The last section is a copy of the error message displayed
at the end of the assembly operation. Warning Errors usually indi-
cate that you made a minor mistake that the assembler “thinks”
it resolved. Theoretically, you can run a program that contains
Warning Errors. Severe Errors are program stoppers. These errors
must be resolved before the program will run.

2'58 UNIT TWO

11.

12.

The last file generated when you assembled your program is
PROG1.CRF. This is a cross-reference file that identifies the loca-
tion of all of the labels, symbols, and variables in the program.
However, it cannot be displayed. To make use of this file, you
must translate the code using the Cross Reference program called
CREF.COM. Type “CREF PROG1” and RETURN. The program
will identify itself, and then ask if you want the cross-reference
file to be called PROG1.REF. You do, so press RETURN. The file
that’s generated contains the necessary code to display a cross-
reference listing of your program.

Type “TYPE PROG1.REF” and RETURN. You should see a dis-
play identical to Figure 2-13. Every label or name used in your
program is listed. Following each is one or more decimal num-
bers. These numbers represent the line number in the program
where you will find the label or name used. The pound sign
(#) identifies the line where the name is defined. For example,
the name COM_PROG is used once on line 3, three times on line
4, and once on line 26. It is defined on line 3.

EXPERIMENT | -- PROGRAM | -- COM PROGRAM FUNDAMENTALS

Symbol Cross Reference (# is definition) Cref-1

COM_PROG . s 8 n s b a e 3 4 4 4 26

DATAL: % s = 55 6 & o8 2 4 5.4 13 204

mTazl - - - L] - - L] - - - L . - 14 21.

START. « B R W e e =] 27

SM. ¢ o s s 5 s 08 58 54 . 15 228

VALLE, . + & v &+ ¢ s s = o o s & &8 8 10 21
Figure 2-13

Cross-reference file listing for
the first assembly language program.

The cross-reference file is used as a debugging tool. In a short
program, it is of little value. However, in a large program, it can
be very helpful when you must locate every application of a par-
ticular name.

Introduction to Assembly Language Programming 2'59

13.

14.

15.

Now that you have assembled your program, it’s time to link
it and resolve any addressing problems. Type “LINK PROG1;”
and RETURN. The linker will display its identification header,
a warning that there is no STACK segment in the program, and
a statement that there was one error detected. A missing stack
segment is normal for a COM program. The error message related
to the missing stack. Thus, the linking operation was completed
with no problems.

The linker performs a number of special operations, and if re-
quested, generates two other files in addition to the EXE file.
Since these are related to multisegment programs, we'll ignore
them for now. Placing the semicolon after the object file name
causes the linker to generate only the EXE file.

You now have an EXE file. But this file is of no value, since
your program was written in a COM file format. Thus, you have
one more operation to perform — EXE to COM conversion. Type
“EXE2BIN PROG1.EXE PROG1.COM” and RETURN. The pro-
gram header will be displayed, and then the MS-DOS prompt
(A: or A>) will be displayed. You now have a machine executable
COM program.

The command line for this conversion program is quite different
from the command lines you typed earlier. After you specify the
name of the program you wish to run (EXE2BIN), you must indi-
cate the name of the program to be converted, along with its EXE
file extension. Then you must indicate the name of the converted
program along with its COM file extension. If you wish, you can
change the name of the converted program. Just don’t forget the
COM file extension. Should you forget to include the converted
program name, the converted program will receive, by default,
the unconverted program name with the file extension BIN. Pro-
grams with the BIN extension will not run under MS-DOS. This
means that you will have to rename the program after it is con-
verted.

Examine the disk directory; type “DIR” and RETURN. Record the
program size for each of the following programs:

PROG1 OB]
PROG1 EXE
PROG1 COM ____

2-60 | unirtwo

The program PROG1.0B]J is the object program generated by the assem-
bler. It contains 113 bytes of program machine code, relative memory
addresses, and specific commands to be used by the linker for convert-
ing the code to an EXE program. After the linker processes the code,
the file PROG1.EXE is generated. It contains 896 bytes of machine code
and program support data. This code would be machine executable
if it had been originally constructed to fit the EXE program format.
Since it wasn’t formatted to be an EXE program, it had to be processed
one more time to remove any EXE program support data. This produced
the program PROG1.COM. The 34 bytes of code remaining in the pro-
gram after the last conversion is the actual machine code for the instruc-
tions and data that was generated by the assembler. You can verify
this by counting the bytes of code in Figure 2-11.

Comparing the EXE and COM program sizes shows that a great amount
of control data is stored within the EXE program. This is necessary
to handle any possible multiple-segment format. On the other hand,
COM programs are arranged in a specific fashion; additional support
is not needed. Therefore, COM programs contain only the actual pro-
gram code. Obviously, creating and storing small programs in COM
form is a more efficient way of using disk storage than the EXE program
form. You, of course, have no choice if your program requires more
than one segment of code or data. You must then use the EXE form.

Discussion

The first part of the experiment gave you an opportunity to review
the program assembly and conversion process. You should now under-
stand what each of the ”output” programs provide in terms of program
documentation. The next part of the experiment will have you examine
your program after it has been loaded into memory. You will also exe-
cute the program code, one instruction at a time, and observe the effects
on the MPU and memory. Note that all of the addressing modes, except
inherent addressing, are illustrated in the program.

Procedure Continued

16. Figure 2-14 is a copy of the source listing of your program. Use
it as a reference in this and the following steps. Call up the debug-
ger and load your program into memory. Type “DEBUG
PROG1.COM” and RETURN. Now type "R” (for register) and RE-
TURN. You can see that the program loader has assigned an ad-
dress base value to all of the segment registers. When the program
is executed, every memory operation will use that value to deter-

Introduction to Assembly Language Programming 2‘61

mine the physical address. Notice that the IP register contains
the hexadecimal value 0100. This is automatically loaded into
the IP register when a COM program is loaded into memory.

The Microsoft MACRO Assembler 91-20-84 PAGE 1-1
EXPERIMENT 1 -- PROGRAM 1 -- COM PROGRAM FUNDAMENTALS

2 TITLE EXPERIMENT 1 -- PROGRAM 1 -- COM
PROGRAM FUNDAMENTALS

3 i

& 0000 COM_PROG SEGMENT ;Beginn
ing of program segment

5 ASSUME CS:COM_PROG, DS: COM_PRGG
» 5S:COM_PROG

6 ;

7 = 0021 VALUE EQU 33 ;Equate
a value to a symbol

8 o100 ORG 1060H sCOM pr
ograms always start here

9 0160 BB @zl START: MOV AX, VALUE ;Store
the immediate value in AX,

1e 0163 @5 0021 ADD AX,33 sthen,
add the immediate value to AX

i 9166 BB 0021 MOV BX,VALUE ;Store
the immediate value in BX,

12 @169 83 €3 21 ADD BX,33 sthen a
dd the immediate value to BX,

13 eiec 2B C3 SUB AX,BX 1finall
y, subtract BX from AX

14 @10E Al @IIC R MOV AX,HORD PTR DATAL 3;Stor
e the data in memory into AX

15 @111 @3 @6 OLIE R ADD AX,DATAZ 3Add mo
re data to AX

16 0115 A3 0120 R MOV WORD PTR SUM,AX 3;Store
the sum in memory

17 0118 2B C@ SUB Ax, AxX sClear
AX

18 oL1A 42 INC AX 3Add 1
to AX

19 01le 48 DEC AX ;Subtra
ct 1 from AX

20 '

21 o11C 21 o0 DATAL DB 33,0 ;Place
2 byte-sized values in memory

22 011E eezl DATAZ DW VALUE ;Place
word-sized value in memory

23 0120 0z [SUM DB 2 DUP (?) sResery
e but don’t initialize 2 memory bytes

24 ??

Fas)]

26

27 0122 COM_PROG ENDS ;End of
program segment

28 END START ;End of

proqram, point to first instruction

Figure 2-14

Copy of the source listing of the first program.

2'62 _ UNIT TWO

17.

Examine the last line of the display. The first eight numerals
are the base and offset address values, separated by a colon, for
the first instruction in your program. The rest of the line contains
the machine language code and the assembly language code for
that instruction.

Compare the code in your display to the code in Figure 2-14,
the program source listing. What are the differences in the assem-
bly language code?

What are the differences in the machine code, and why is there
a difference?

The difference in the assembly language code lies in the handling
of the label and symbol. The label is missing and the symbol
is replaced by its actual value. The reason for these differences
is that the debugger doesn’t have access to a program listing.
Rather, the debugger contains a disassembler that converts the
machine code back into assembly language. Labels aren’t repro-
duced, since they only have significance when a program is being
assembled for the first time, when address offsets must be calcu-
lated. Symbols are shown as actual values, since that is the data
stored in the machine code.

The difference in machine code lies in the manner that it is pre-
sented; the actual code hasn’t changed. The source listing pre-
sents the code in a logical arrangement. In this case, move (B8)
a value (0021) into the AX register. The debugger presents the
code as it is physically stored in memory. The instruction (B8)
is still first, but the word-sized value is rearranged so the low
byte (21) precedes the high byte (00). Recall that when the MPU
processes word-sized values in memory, it expects to find the
low-byte in the first (lowest) memory location and the high-byte
in the next (higher) memory location.

Introduction to Assembly Language Programming 2'63

18.

To get a better idea of how this low-byte/high-byte arrangement
affects the loading of a program in memory, let’s examine the
section of memory containing your program. Type “D” (for dump
memory) and RETURN. The debugger displays 128 bytes of mem-
ory beginning at the address pointed to by the DS register with
an offset of 0100H. That is the default address for the first dump
after entering the debugger with a COM program. Figure 2-15
represents the display you have produced since entering the de-
bugger. Your display should be similar. The segment register
values may be different. Remember, the program loader deter-
mines those values.

Compare the code in your display with the source listing machine
code in Figure 2-14. Notice that the code is in sequence, except
for the word-sized values. After offset address 0121H, your dis-
play may not match the figure. This area is beyond your program
and could contain any value. It all depends on what your system
did with this memory prior to your loading the debugger.

Record the values stored at the following offset address locations.

0120H —
0121H e

Recall that these are the two reserved locations that were not
initialized by the program. Because these memory locations were

not initialized, there is no way to determine what values you
will find.

A:DEBUG PROG1.COM

DEBUG version 1.8

>R

AX=0000 BX-0000 CX=0022 DX=0000 SP=FFF@ BP=0000 S1=0000 DI=0000
DS=0A09 ES=0A09 S5S=0A09 C(S=0A07 IP=0100 NV UP DI PL NZ NA PO NC

6/09: 0100 BS2100 MOV AX, 0621
D
0A09:0100 BS 21 00 05 21 @0 BB 21-00 83 C3 21 2B C3 Al IC 8!..!.;!..CI4C!
0/09:0110 01 93 06 1E 91 A3 20 01-2B CO 40 48 21 00 21 00 b oeRH!L !,
0h09:0120 00 00 0D 0A 20 20 20 20-20 26 20 20 20 20 20 20 v
0A09:0130 20 20 20 20 20 20 20 20-20 20 20 20 72 61 74 &5 rate
0A09:0140 2E @D @A OD OA 20 20 20-20 20 20 20 20 20 20 20
0A09:0150 20 20 20 20 20 46 39 20-2D 20 53 b1 76 65 20 70 F9 - Save p
0A09:0160 72 &F 67 72 b1 6D 20 £9-6D b1 47 65 20 20 2D 20 rogram image -
ORO9:0170 20 S4 68 69 73 20 6F 70-74 &9 6F 6E 20 77 69 4C This option wil
>

Figure 2-15

Debugger display.

2-64 | unitTwo

19.

20.

21,

22.

Now it's time to evaluate the program instructions. You will exe-
cute each instruction using the “trace” feature of the debugger.
Every time you use the trace command, the current instruction
will be executed, updating the MPU registers and any affected
memory. After the instruction is executed, the next instruction
will be displayed.

Before you begin “single-stepping” through the program, type “R”
and RETURN. This will show you the current status of the MPU
registers, and it will show you the first instruction in the program.
Notice that the IP register contains the value 0100H, the address
offset of the next instruction to be executed.

Type “T” and RETURN. The trace command executes the instruc-
tion pointed to by the CS and IP registers. In this case, move
the value 33 into the AX register. The AX register now contains
the value ___H.

Type “T” and RETURN. The value 33 is added to the contents
of the AX register. The AX register now contains the value
S -,

Type “T” and RETURN. This instruction moves the value 33 into
the BX register. The BX register now contains the value _____H.

Notice that the next instruction to be executed adds the im-
mediate value 33 to the BX register. However, the instruction
is structured a little differently from the previous add instruction.
The actual instruction code requires two bytes of code, whereas
the add AX instruction required only one byte of code. This is
because the 8088 MPU, like most other MPUs, is structured to
conserve code and execution time when performing arithmetic
operations with the AX (accumulator) register.

It's interesting to note that the value 33 occupies two bytes in
the add AX instruction while it occupies only one byte in the
add BX instruction. That is a function of the 8088 MPU instruc-
tion code. Had the value exceeded 255, the add BX instruction
would have also required two data bytes. The term “+21” in
the instruction, is the disassembler’s way of showing that the
immediate value 21H is being added to the specified register.

Introduction to Assembly Language Programming 2'65

23.

24.

25.

Type “T” and RETURN. The value 33 is added to the contents
of the BX register. The BX register now contains the value _____H.

These last four instructions are examples of immediate operand
or immediate addressing mode instructions. The immediate value
occupies the source operand part of the instruction.

Type “T” and RETURN. The contents of the BX register are sub-
tracted from the contents of the AX register, and the difference
is stored in the AX register. Notice that the contents of the BX
register are not affected by the operation. The AX register now
contains the value ____H, while the BX register contains the
value _____H. This was an example of a register addressing mode
instruction. Remember that any general register pair can be used
to add or subtract one register from another. Likewise, an im-
mediate value can be added to or subtracted from any general
register.

Type “T” and RETURN. Since this is a word move operation,
the corn:tents of address offset 011CH are moved into the low-byte
of the AX register, while the contents of address offset 011DH
are moved into the high-byte of the AX register. The AX register
now contains the value —___H. Notice that the disassembler
identified the memory location by placing the address offset with-
in square brackets. It also indicated the segment register that will
supply the base value for determining the physical address of
the memory location, and the data that is stored at that location.
This information is on the right end of the instruction code line
(DS:011C=0021).

Remember, because this instruction is moving data from memory,
the MPU obtains the base address value from the DS register.
The offset address is then added to the base address to form the
physical address of the memory location. For example, using the
DS register contents in Figure 2-15 as the base address, then the
first byte of data is found at physical address 0A1ACH (0A090H
+ 011CH).

2'66 UNIT TWO

26.

27.

28.

29.

30.

Type “T” and RETURN. This time, we are adding a word of data
from memory to the AX register. Again, the first byte addressed
in memory is moved into the low-byte of the AX register, while
the next byte in memory is moved into the high-byte of the AX
register. The AX register now contains the value _____H.

Type “T” and RETURN. The data in the AX register is moved
into offset memory locations 0120H and 0121H. What value, do
you think, is moved into each of the locations?

0120H —
0121H — H

Type “D 100” and RETURN. Typing a hexadecimal value after
the “D” causes the memory dump to begin at the offset address
value specified. If the value is not included, the dump will begin
at the next memory location after the previous dump. In your
case, the next memory location would have been offset address
0180H.

Examine offset address locations 0120H and 0121H. What value
was moved into each location?

0120H —H
0121H R |

You should have found the values 42H (offset 0120H) and O0H
(offset 0121H).

Type “T” and RETURN. This instruction subtracted the AX regis-
ter from the AX register. The reason for performing such an opera-
tion is to clear, or zero, the register contents. You could have
moved the value 0000H into the register, but it would have taken
more bytes of machine code and more time to execute. You will
find this a handy process when you need to clear any of the
general registers. The AX register now contains the value ____H.

Type “T” and RETURN. The AX register is incremented by one.
The AX register now contains the value ____H.

Introduction to Assembly Language Programming 2'67

31. Type “T” and RETURN. The AX register is decremented by one.
Both the increment and the decrement instructions are single-byte
arithmetic operations that let you increase or decrease the value

of a general register. The AX register now contains the value
S §

The decrement instruction is the last instruction in your program.
Yet, if you look at your display, you see that the debugger’s disas-
sembler has decoded the program’s data and come up with
another instruction. Naturally, there are no more instructions, but
the disassembler has no way of determining that. This points
out the fact that you must be careful when using the disassembler
to examine code. It always assumes that the IP register is pointing
at a valid instruction.

Discussion

The few instructions that you have examined should give you an idea
of how the 8088 MPU can be made to perform many useful tasks. While
the range of control is limited, a practical program is not impossible.
Therefore, your next task in this experiment is to write a simple COM
program to multiply one number by another. Use the editor to write
the program, the assembler to convert it to object code, the linker to
process the code, and the EXE2BIN program to convert the EXE file
into a COM file. Don’t forget to use the appropriate assembler directives.

Procedure Continued

32. Exit the debugger in preparation for wri{ing the program. Type
“Q” and RETURN. The system prompt (A: or A>) will appear.

33. Write a program to multiply the number five times the number
seven. To help conserve memory space, use byte-sized values.
Have the program store the product in memory. Assemble, link,
and convert the program to a COM file. Load the program into
memory with the debugger and single-step through the instruc-
tions to verify that the program works.

2'68 UNIT TWO

Discussion

Even with a few simple instructions to choose from, there can be many
variations in program design, or structure. Figure 2-16 is one possibility.
If your program is different, don’t worry. The point of this exercise
is to use the knowledge you have gained to create a program that works.
Since we can’t review your program, let’s take a look at the program

in Figure 2-16.

TITLE EXPERIMENT 1 -- PROGRAM 2 -- SIMPLE MULTIPLICATION THROUGH ADDITION

COM_PROG SEGMENT
ASSUME C5:COM_PROG, DS:COM_PROG, SS: COM_PROG

1

MULTI EQU
ORG

START: SUB
MOV
ALD
ADD
ADD
ADD
ADD
MOV

3
FRODUCT DB

COM_PROG ENDS
END

7
100H

AL, AL
BL,MULTI
AL,BL
AL,BL
AL,BL
AL,BL

AL, EL
PRODUCT, AL

@

START

;Beginning of program segment

;Equate program multipliicand value
;COM programs always start here
;Clear the PRODUCT register

;Get the multiplicand,

sthen perform the

ymultiplication operation

;by adding the multiplicand

sto the PRODUCT register

39 (multiplier) times

1Store the product

jReserve one byte in memory

sand initialize the byte to @

sEnd of program segment

sEnd of program, point to first instruction

Figure 2-16

Program to multiply two numbers through repeated addition.

We decided to use an equate statement to define the multiplicand. You
could have just as easily moved the immediate value seven into a regis-
ter. However, you will find that it is a good idea to make it a habit
to use equate statements to define constants.

Introduction to Assembly Language Programming I 2'69

The first instruction in the program clears the AL register. You may
have noticed that when you examined your program with the debugger,
the AX register was already at zero. So why clear it again? The reason
is, you can never be sure that any particular register will be cleared
prior to executing a program. Therefore, it's always best to clear a regis-
ter if that register must be empty for an operation.

The next instruction loads the BL register with the multiplicand, in
preparation for the multiplication through repeated addition operation.
You could have just as easily added the immediate value seven to the
AL register five times. However, the process we chose uses less instruc-
tion code and execution time, even though there are more instructions
involved in the process. The next five instructions perform the actual
multiplication operation.

Finally, the last instruction stores the product in memory.

As you can see, multiplication through repeated addition is a tedious
process. In fact, it is almost impossible to use when large numbers
are involved. In addition, every time you change the multiplier, you
must change the number of instructions in the program. The next unit
will show you how a simple program loop can resolve these problems.
However, before you leave this experiment, we wish to show you how
the arithmetic operators are used.

2-70 | unirtwo

Procedure Continued

34. Enter and convert the assembly language program shown in Fig-
ure 2-17 into a COM program.

35. Load the program into memory with the debugger, and single-step
through the program. As you execute each instruction, compare
the display with the instructions and comments in Figure 2-17,
and with the following comments.

TITLE EXPERIMENT 1 -- PROGRAM 3 -- USING ARITHMETIC OPERATORS

]
COM_PROG SEGMENT jBeginning of program segment
ASSUME CS:COM_PROG, DS: COM_PROG, SS: COM_PROG
)
NUM@ EQU @ iFirst constant
NUM1 EQU NUMO + 16 jReference second constant to first
NUM2 EQU NUMO + 33 jReference third constant to first
ORG 108H ;COM programs always start here
START: MOV AX,NUMO + 15 sLoad AX immediate with first
sconstant plus 15
NV BX,NUMl - @FH ;Load BX immediate with second
jconstant minus 15
MOV Cx,15 # 3 jLoad CX immediate with 45
Hov DX,NUM2 / &FH ;Load DX immediate with quotient
jof third constant divided by 15
MoV BP,NUMZ MOD OFH ;Load BP immediate with remainder
jof third constant divided by 15
MOV SI,VAR® + 2 sLoad the data word located at
jaddress offset VAR® + 2 into SI
MOV DI,VARZ - 4 jLoad the data word located at
jaddress offset VARZ - 4 into DI
MOV AX,VAR1 - VAR® ;Load the constant, produced by
jsubtracting variable
;VAR® from VARI, into AX
MoV BX,~ (NUM® + 1) ;Load the 2s complement of the
sfirst constant + 1 into BX
MOV CX,0F0FOH SHL 4 ;Shift the immediate value 4 bits
yleft and load it into CX
MOV DX,0FOFOH SHR 4 jShift the immediate value 4 bits

jright and load it into DX

]
VAR® DH OFOFH sInitialize a word of data
VAR1 1] 10104 ;Initialize another word of data
VAR2 Di 2 DUP (?7) ;Reserve space for 2 words of data
COM_PROG ENDS ;End of program segment
END START 1End of program, point to beginning
Figure 2-17

Program to show the operation of the arithmetic operators.

Introduction to Assembly Language Programming 2"71

Before we discuss the instructions, look at how the equate state-
ments are handled. The symbol NUMO is equated to the value
zero. The next two symbols are equated to the symbol NUMO
plus a constant, using an arithmetic operator. This is a handy
way to establish related symbols in a program.

The first five instructions produce obvious results, since they are
dealing with immediate values. The next three instructions show
how the operators can be used with variables. There are no other
possible combinations of variables and constants (symbols).

In the first example, VARO has an offset of 0123H. When the
constant 2 is added to the offset, the new offset is 0125H. Thus,
the word-sized data that is loaded into the SI register is located
at offset addresses 0125H and 0126H.

The second example performs the same operation, only this time,
the constant 4 is subtracted from the offset of VAR2. This produc-
es the new offset address 0123H. The word-sized data that is
located at this address and address 0124H is loaded into the DI
register.

The last example using a variable, shows that when one variable
is subtracted from another, the difference is a constant. In this
case, VAR1 minus VARO equals 2.

The next instruction illustrates the hierarchy aspect of arithmetic
operators. Without the parentheses, NUMO would be negated, and
then one would be added to the result to produce the value 1.
With the parentheses, one is added to NUMO, and then the result
is negated to produce the value OFFFFH.

The last two instructions show the operation of the shift
operators. In the first example, the value OFOFOH is shifted left
four bits to produce the value OFO0H. Remember that in some
early versions of the IBM assembler, the operation is reversed.
It assumes that the instruction reads, “shift left the value 4,
OFOFOH counts.” Since the shift count exceeds the capacity of
the register, the shift is not executed. Thus, the unshifted value
four is moved into the CX register.

2-72 | unirTwo

The second example shifts the value OFOFOH four bits right to
produce the value OFOFH. Again, we must remind you that some
versions of the IBM assembler always return the value 0000H
for a shift right operation.

This completes the Experiment for Unit 2. Now would be a good time
to write a few programs on your own, to reinforce your understanding
of the material presented in this unit. When you are finished, proceed
to the Unit 2 Examination.

introduction to Assembly Language Programming 2'73

UNIT 2 EXAMINATION

State the four steps in the generation of a COM program.

A.
B.
C.
D.

Which characters are allowed to be used in labels and names?

In an assembler directive statement, the name field uses a colon

as an end delimiter.
True/False

In an instruction statement, if two operands are used they are
always separated by a:

A. Comma,.

B. Semicolon.
C. Space.

D. Colon.

In an instruction statement or assembler directive statement, the
comments field always uses a semicolon as a beginning delimiter.

True/False

A label or name can begin with a letter or a numeral.
True/False

Which of the following operand types is part of a processor con-
trol instruction?

A. Register.
B. Inherent.
C. Memory.
D. Immediate.

2-74 | unirTwo

10.

11.

12.

13.

14.

The default radix for MACRO-86 is

The instruction
INC BP

uses addressing.

The arithmetic operator in the following instruction that will be
evaluated last is:

ADD AX,(NUM1 + 5) * 5 MOD (NUM1 SHL 2)

A +

B, *

C. MOD
D. SHL

The ASSUME directive must precede the SEGMENT directive

in a COM program.
True/False

The assembler directive END identifies:

The beginning of an EXE program segment.
The end of an EXE program segment.

The beginning of an EXE program.

The end of an EXE program.

ooy

The highest number of SEGMENT directives that can be used
in a COM program is:

A. One.
B. Two.
C. Four.
D. No limit.

COM programs must have a separate stack segment.
True/False

Introduction to Assembly Language Programming 2'75

EXAMINATION ANSWERS

The four steps in the generation of a COM program are:

Write the assembly language code with an editor.
Assemble the program code to produce the object code.
Link the object code.

Convert the EXE file to a COM file.

=Nl T4

The characters A through Z,, 0 through 9, 7, @, _, and $ are al-
lowed to be used in labels and names.

False. In an assembler directive statement, the name field uses
a space, not a colon, as an end delimiter.

A — In an instruction statement, if two operands are used they
are always separated by a comma.

True. In an instruction statement or assembler directive statement
the comments field always uses a semicolon as a beginning delim-
iter.

False. A label or name cannot begin with a numeral.

B — The inherent operand type is part of a processor control in-
struction.

2‘76 UNIT TWO

10.

11.

12,

13.

14.

The default radix for MACRO-86 is decimal, or 10.

The instruction
INC BP

uses register addressing.

C — The arithmetic operator in the following instruction that will
be evaluated last is MOD.

ADD AX, (NUM1 + 5) * 5 MOD (NUM1 SHL 2)

False. The ASSUME directive does not precede the SEGMENT
directive in a COM program.

D — The assembler directive END identifies the end of an EXE
program.

A — The highest number of SEGMENT directives that can be used
in a COM program is one.

False. EXE programs must have a separate stack segment, COM
programs contain one common segment.

Introduction to Assembly Language Programming 2'77

10.

11.

12.

13.

SELF-REVIEW ANSWERS

Assembler notation consists of two types of statements: assembler
directives and instructions.

Assembly language programs are written using EDLIN.COM or
some other text editor.

The program in text form is called the source code.
MASM.EXE is used to translate the program into object code.
The file extension for an assembly language program is ASM.
The linker is used to convert object code to executable code.

The program EXE2BIN.EXE is used to convert an EXE file to a
COM file.

The COM file is limited in size to 64K bytes.

The assembly language instruction statement consists of four
fields. These are:

A. Label

B. Opcode

C. Operands
D. Comments

Characters that are used to indicate the beginning and end of
the different fields in an instruction are called delimiters.

Another term for opcode in an instruction is mnemonic.

False. An instruction statement can contain zero, one, or two
operands, but not three.

In addition to the letters A through Z and the numerals 0 through
9, the legal characters in a label or name include:

?
@

ooy

2-78 | unTwo

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

The assembler will recognize labels and names up to 31 charac-
ters long.

The assembler directive statement consists of four fields. They
are:

A. Name.

B. Directive.
C. Argument.
D. Comments.

True. Assembler directive statements are never translated into
object code.

A name can assume one of two attributes: variable or symbeol.
Symbols represent constants.
False. The end delimiter for a name is a space, not a colon.

The ORG (origin) directive allows you to specify an address offset
value in a program.

The EQU (equate) directive allows you to associate a symbolic
name to a constant or another symbol.

The define (byte or word) directive is used to allocate memory
units to data storage.

The physical address of a variable is determined by adding the
variable offset to the shifted contents of the Data Segment register.

The operator DUP is used to initialize a block of predefined mem-
ory.

If the address offset assigned to the variable PRODUCT is 0100H,
the directive statement

PRODUCT DW OE5A8H

will load the value 0A8H at address offset 0100H and the value
OE5H at address offset 0101H. '

The END directive is used to tell the assembler that the program
is complete.

Introduction to Assembly Language Programming 2'79

27.

28,

29,

30.

31.

32.

33.

34.

35.

36.

37.

Instructions that do not use some form of addressing are called
inherent instructions.

An immediate operand is always a source operand.
The default radix for an immediate operand constant is decimal.

You can change the default radix with the assembler directive
.RADIX.

Only one ASCII character can be coded into a byte-sized memory
location.

No. The register operand addressing mode cannot contain an im-
mediate operand. By definition, it contains two register operands.

Of the 14 8088 MPU registers, the Instruction Pointer register
is not directly addressable through an instruction.

The four general registers that are composed of two 8-bit registers
are:

A. AX
B. BX
C. CX
D. DX

No. The instruction
DATAL: ADD SI,BL

is not a legal operation. The register sizes do not match.

False. The instruction
MOV AX, PRODUCT

will move the contents of the memory location found at the offset
address assigned to the variable PRODUCT into the AX register.

If the offset address of the variable SUM is 0105H and SUM is
defined as a word-sized memory location, the instruction

MOV SUM, 3456H

will move the value 34H into the memory location at offset ad-
dress 0106H.

2'80 .UNIT TWO

38.

39.

40.

41,

42,

43.

44.

45.

46.

47.

48.

If the DS register contains the value 0D20H, then the instruction
from question 37 will load the value 56H into the memory loca-
tion at physical address 0D305H.

The assembler operator pointer (PTR) will allow the contents of
two consecutive byte-sized memory locations to be loaded into
a 16-bit general register.

False. Data in one memory location cannot be transferred directly
to another memory location. It must be transferred to a register
first.

Name the seven arithmetic operators.

A, + Add

B, = Subtract or Negate
C. = Multiply

D. / Divide

E. MOD Modulo

F. SHR Shift Right

G. SHL Shift Left

True. The add (+) and subtract (—) operators can be used with
constants, symbols, and variables.

Subtracting a constant from a variable produces a variable.
Subtracting a variable from a variable produces a constant.

The 2’s complement is produced using the subtract or negate
operator.

False. The multiply (*) and divide (/) operators can, only be used
with constants and symbols. Variables can only be used with
the add (+) and subtract (—) operators.

The divide (/) operator returns the quotient.

False. The assembler allows the shift left operator to generate
a value that exceeds the capacity of a register only if the register
is a 16-bit register. 8-bit registers will cause the assembler to gen-
erate an error message.

Introduction to Assembly Language Programming 2‘81

49,

50.

51.

52,

53.

54.

55.

56.

57.

58.

The instruction
VALUE: MOV AL,11B SHL ((5%2-20/3) MOD 5)

moves the value 00110000B or 30H into the AL register. There
are two levels of parentheses in the source operand. The inner
level is evaluated first, then the outer level. Thus, the expression
(5%2-20/3) is evaluated first, giving the value four. Then, this is
divided by five, leaving a remainder of four. Finally, the value
11B is shifted left four bits by the remainder four.

False. The assembler assigns logical addresses to the program
segments.

The assembler directive SEGMENT defines the beginning of a
program segment.

The assembler directive ENDS defines the end of a program seg-
ment.

False. The name SEGMENT_DATA is not considered a reserved
word. However, the name SEGMENT by itself would be consid-
ered a reserved word.

False. You are limited to one segment in a COM program. Only
EXE programs can have more than one segment.

The ASSUME directive requires two arguments separated by a
colon: they are segment register and segment name.

If you use three SEGMENT directives in a program, then you
must have an equal number of ENDS directives, three. The mini-
mum number of ASSUME directives is one, there is no maximum
number.

False. You can only use one SEGMENT and one ENDS directive
in a COM program.

False. When an EXE program is loaded into memory, only the
CS register is automatically loaded with the appropriate base ad-
dress value.

2-82 | unrTwo

59,

60.

If you have assigned the name DATA1 to the program segment
that will contain the program variables, the two instructions that
you should use to load the DS register with the appropriate base
address value are:

MOV AX,DATAl ;:Get the base address value
MOV DS, AX ;Store the value

Yes. A COM program will translate properly if the argument
STACK is left out of the program, since you don't use the argu-
ment STACK in a COM program. It is only used in an EXE pro-
gram.

LAHASNI

Unit 3

PROGRAM TRANSFER
INSTRUCTIONS

3'2 UNIT THREE

CONTENTS

Introduction SAE b AR SR AT B B I e SR Bt 3-3
RIRE OBJOCTRVES o« 50 v max o0 wansian e m s 6o s b s Bacs oo s 3-4
LDt Activity CRIAE oo o won o svmns voms s aos &6 A5 65 0 G4 525 3-5
Flowchartingc.ciiuiiiiniiiiiiiiireninrinnsannn 3-6
PEEPE covmain smsiens sommemmare soomdti o R ek i, 606535 a0% B Rovd 596 w5 3-16
LSOBE iv0 wsiw vos wes E9 EEEwE EEVEE HEWER SO B O B L DR G G0 1 3-32
Experimentcciiiiiiiiiiinrenenniininioinnaanan 3-39
Unit: 3 ExankDallon: «oeee vemen enmem sosien w e semess #oaom o 3-62
Examination Answerscoivvininiannn Foa R 3-65

Self-ReVIEW ADNSWELS . ..ot iiiinnsan et erenrseennsns 3-67

Program Transfer Instructions 3‘3

INTRODUCTION

The last unit introduced you to the basic concepts of assembly language.
You learned how to structure the code, establish program segments,
and implement the three basic instruction addressing modes. The pro-
grams you wrote are what we call “straight-line” programs. That is,
all of the instructions are executed sequentially.

While straight-line programs serve a function, they do present certain
limitations; the biggest of these was illustrated in the multiplication
program you wrote in the last experiment. If you wish to repeat an
operation 25 times, then you must write the instruction 25 times.
Ideally, you would write the instruction one time, and then repeat the
instruction by “branching” back to it the required number of times.

The 8088 MPU instruction set has a number of instructions that let
you control the direction of program flow. They can be used to force
the program to repeat a number of instructions, or they can cause the
program to bypass a number of instructions under certain operating
conditions. These program transfer instructions fall under two
categories: jump instructions and loop instructions. The main purpose
of this unit is to show you how to use these instructions to break out
of the straight-line program.

Since you will be writing more complex programs in this and the fol-
lowing units, you should first learn how to approach the task of writing
a program in an organized fashion. For that reason, the first part of
this unit will show you one of the more popular methods for planning
the structure of a program — flowcharting. After we show you how
to organize and construct a flowchart, we will review conditional and
unconditional jump instructions, and finally, we will review the condi-
tional and unconditional loop instructions.

Use the “Unit Objectives” that follow to evaluate your progress. When
you can successfully accomplish all of the objectives, you will have
completed this Unit. You can use the “Unit Activity Guide” to keep
arecord of those sections that you have completed.

3'4 UNIT THREE

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1.

2.

Construct a flowchart for a stated problem.
Name the five most commonly used flowchart symbols.

Explain the difference between direct and indirect jumps, and
name a use for each.

Explain the difference between conditional and unconditional
jumps and loops.

Name the six flags in the Flag register that are used by the condi-
tional jump and loop instructions and state the conditions that
cause these flags to be set.

State how to use, or use the following instructions in a program:
CMP, CLC, CMC, STC, JA, JNBE, JNB, JAE, JB, JNAE, JC, JBE,
JNA, JE, JZ, NLE, JG, JLE, JNG, JNL, JGE, JL,]NGE, JNC, JNE,
JNZ, INO, JNP, JPO, JNS, JO, JP, JPE, JS,]MP, LOOP, LOOFPE,
LOOPZ, LOOPNE, and LOOPNZ.

Name the conditions that cause the various conditional jumps
and loops to be taken.

Write a simple program to form a program loop.

Program Transfer Instructions 3‘5

O 0 0000a0Q0gaog O

UNIT ACTIVITY GUIDE

Read the Section on “Flowcharting.”
Complete Self-Review Questions 1-5.
Read the Section on “Jumps.”
Complete Self-Review Questions 6-18.
Read the Section on “Loops.”

Complete Self-Review Questions 19-27.
Perform the Experiment.

Complete the Unit 3 Examination.

Check the Examination Answers.

Completion
Time

3'6 UNIT THREE

FLOWCHARTING

As the programs you write increase in complexity and length, the need
for some type of organization for problem solving becomes quite evi-
dent.

The exact method of problem solving will vary from person to person.
Some may have an intuitive “feel” for program development and may
write programs “off the top of their head.” If you can do this, you
are fortunate indeed. Most people, however, need a formal “plan of
attack” when solving problems and writing programs.

Program Organization

Essentially, there are three steps to writing a program. The first is to
define the problem. This may seem like a relatively easy task, but it
sometimes proves to be the most difficult. Unfortunately, there is no
set procedure for defining problems. Some problems will lend them-
selves to mathematical definitions, while others may require a logical
or graphical approach. We can only advise you to analyze each situation
carefully before you attempt to define the problem.

The last step in creating a program is the writing of that program.
You already know a little bit about writing programs, and you will
be learning much more as you progress through the course. What we
are primarily concerned with here is the second step in creating a pro-
gram: mapping or flowcharting the solution.

Program Transfer Instructions 3"7

Flowchart Symbols

Given a well structured blueprint, a carpenter can construct even the
most complex project with little or no difficulty. The same is true of
a programmer with a good flowchart. As a matter of fact, some flow-
charts are so detailed that little remains for the programmer to do other
than fill in the appropriate instructions. For our purposes, we’ll use
a simple flowcharting technique using five of the most common sym-
bols. These are shown in Figure 3-1.

O

OPERATIONS DECISION TERMINAL

O —>
CONNECTOR FLOW LINES

Figure 3-1
Flowchart symbols.

All flowcharts have a beginning, and most will have an end. These
are referred to as the “terminal” points of the flowchart, and they are
represented by the terminal symbol. The terminal symbol seen in Fig-
ure 3-2 is simply labeled “start” or “stop,” to denote its meaning.

D

Figure 3-2
Terminal symbol.

3'8 UNIT THREE

The operations box is probably the most frequently used flowchart sym-
bol. It may represent a transfer process such as moving or loading data,
or an algebraic process like addition or multiplication. It can also be
used for such statements as “print” or “set.” If you have a process
that is not specified by one of the other symbols, use the operations
box. Some examples of the operations box are shown in Figure 3-3.

PROCESS

The diamond-shaped decision box is really the “heart” of the flowchart.
It indicates a logical choice between two conditions and, therefore,
it controls the direction of program flow. If a condition is satisfied,
the “yes” route is taken. If the condition is not satisfied, the “no” route
is selected. Typical examples for using the decision box are shown
in Figure 3-4. The yes and no routes can originate in any corner of

the diamond.

YES

YES

YES

Figure 3-4

Decision box.

LOAD MOVE
A ATOB
oo | [

ATOB
A*xB
PRINT SETA
A TO 15

Figure 3-3
The operation box.

Program Transfer Instructions 3'9

Flow lines and connectors are used to tie the symbols and sections
of the flowchart together. Normally, the chart will be arranged to flow
from top to bottom and from left to right. However, there is no set
rule in regard to this, and the flowchart could just as well flow in
the opposite direction. The use of flow lines as well as connectors
is demonstrated in Figure 3-5. The connector symbols direct you from
one section of the program to another. The connectors are labeled with
values to indicate where the connection takes place; 1A connects with
1A, 2A connects with 2A, etc.

TO PRINT

¥

MOVE
ADDRESS
TO PRINT

]

WRITE
PRINT

&

MOVE
EMPLOYEE NUMBER
TO PRINT

R

Figure 3-5

Connectors and flow lines.

3'1 0 UNIT THREE

Mathematical Symbols

Usually, sophisticated flowcharts use mathematical symbols to repre-
sent the decision-making process. These symbols allow us to illustrate
our decision quickly and concisely. In Figure 3-6A, you will see the
five most frequently used symbols and their meanings. Figure 3-6B
shows some examples of their use.

A SYMBOL EXAMPLE DESCRIPTION
1. = A=B Ais equal to B.
2. > A>B A is greater than B.
3 < A<B AislessthanB.
4 = A=B A is greater than or equal to B.
5 = A=B A is less than or equal to B.

YES

AlS
GREATER

AlS
GREATER

THAN 14 NO THAN OR
EQUAL TO
AIS AlS AlS 100
14 OR 10 OR LESS THAN
UNDER HIGHER 100
Figure 3-6

Mathematical decision making symbols and their use.

Program Transfer Instructions 3'1 1

Constructing The Flowchart

Now that you can identify flowchart symbols, it’s time to solve a few
problems using flowcharts. The first, to add three numbers and produce
a sum, is shown in Figure 3-7. The problem and the mathematical ex-
pression of the problem are shown on the left. The mathematical expres-
sion serves as a definition of the problem. Our flowchart is on the

right.
(START)
PROBLEM:
Y
1. Add 3 numbers: ::lEBAE():
A, B, and C,producing sum S. T
2. Print sum.
S=A+B+C

S=A+B+c PFléNT

STOP

Figure 3-7
Flowchart construction.

It begins with the start terminal symbol. In a flowchart of this size,
you might think that this symbol is unnecessary. But, no matter how
simple you think a flowchart is, always use the start terminal symbol.
You will see later on in this course that flowcharts can get quite lengthy,
and it is often necessary to return to the beginning of your flowchart.
The start terminal symbol allows you to do this with ease. If you use
it all the time, even when it seems unnecessary, then you’ll never get
into difficulty locating the beginning of the program.

Next you find an operation box that tells the computer to read, or iden-
tify, the variables A, B, and C. This process would actually move the
numbers from memory into the microprocessor. Again, you might think
that this box is unnecessary or that it could be combined with the
next operation box. But, remember, the more detailed the flowchart,
the easier it is to write your program from it.

3'1 2 UNIT THREE

In the second operation box, the microprocessor is instructed to add
A, B, and C, giving the total S. The final operation box tells the micro-
computer to print the solution, S. Finally, the stop terminal symbol
is used to end the process.

Now that you have seen how it is done, it’s time to look at a more
complex problem. In Figure 3-8 you see a drawing of a traffic intersec-
tion. Main Street is a busy thoroughfare, while Side Street handles
only a moderate amount of traffic. A traffic study shows that if traffic
on Main Street is allowed to move for two minutes, while traffic on
Side Street is allowed to move for one minute, the intersection controls
traffic very efficiently. Light A has been assigned for control of traffic
on Main Street and light B for control of traffic on Side Street.

Figure 3-8
The traffic problem.

It is not necessary at this point, but you might like to try to draw this
flowchart yourself. If not, just read along while we work our way
through the problem. Before you can attempt to draw a flowchart, you
must carefully examine the problem. That is, you must carefully deter-
mine exactly what each light must do.

Light A must remain green for two minutes. Naturally, you want a
caution light between read and green. We suggest a yellow light dura-
tion of 10 seconds. The duration of the red light will be controlled
by light B. Light B, on the other hand, will be green for one minute
and yellow for ten seconds. When light B turns red, light A turns green
and the cycle is repeated.

Program Transfer Instructions 3'1 3

With this information, you should encounter little difficulty drawing
the flowchart for this problem. Defining the problem in detail will al-
ways simplify problem solving. If you care to try your hand at this
flowchart, grab a pencil and some paper and give it a try. If not, just
continue reading. You'll find our solution in Figure 3-9.

LIGHT “A"

CHANGE CHANGE HOLD
GED——{ S |of s [of G L e |] omes | o
TO GREEN i TO YELLOW ‘;05-5“2":" TO RED

HOLD HOLD
CHANGE CHANGE
@—-I UGHTE b—pl UOHTE L ol (GHTE |[—n] Py
TO GREEN GREE 10 YELLOW EAON 70 RED I
- UNCONDITIONAL i
Figure 3-9
The traffic solution.

The flowchart begins in the top left-hand corner of Figure 3-9., The
first five operation blocks control the operation of light A. You begin
the program at the box that changes light A to green. The second opera-
tion holds the light green for two minutes. After this, light A must
change to yellow and hold there for ten seconds as the next two blocks
indicate. Finally, light A is changed to red by the fifth operation.

Connector 1A tells you that the flow of the program picks up at the
corresponding 1A connector in the bottom left-hand corner of the illus-
tration. Here, you enter the light B routine that controls the traffic on
Side Street. Now that the traffic on Main Street has a red light, it is
safe to change light B to green. Light B is held green for one minute,
then it is changed to yellow and held for ten seconds. Finally, light
B changes to red. Of course, you want this process to repeat, so you
draw a flow line from the end of the light B cycle back to the beginning
of the light A cycle.

3-14

UNIT THREE

This type of a flow line is called an unconditional branch, because
it must always return the program to a particular point in the flowchart.
The unconditional branch would correspond to an unconditional jump
in the actual program code. Keep this in mind when we discuss program
jumps in the next section.

There are other flow lines that originate at a decision box rather than
at an operation box. These are called conditional branches because the
flow of the program along these lines is based on the conditions stated
in the box. Conditional branches in a flowchart are related to condi-
tional jumps in an actual program.

Figure 3-10 demonstrates the use of the decision box and the condi-
tional branch. The problem is stated on the left and the flowchart solu-

tion is shown on the right.

N WAIT
L FOR SALE
A THEATER HAS 1000 SEATS. 4‘
THE MANAGER WANTS THE
“SOLD QUT" SIGN TO LIGHT ADD 1 TO
AUTOMATICALLY WHEN ALL TOTAL NUMBER
THE TICKETS HAVE BEEN OF TICKETS
SOLD. PURCHASED.
SUBTRACT
TOTAL NUMBER
OF TICKETS
PURCHASED
FROM 1000,
DOES
1000-TOTAL

PURCHASED

NO £
RETURN TO EQUAL 07
SELL MORE
TICKETS
LIGHT
“SOLD OUT"
SIGN
& r
Figure 3-10 STOP

Using the decision box.

Program Transfer Instructions

Again, the chart begins with the terminal start symbol. As each ticket
is purchased, it is added to the total number of tickets purchased. Then
the total number of tickets sold is subtracted from the number of seats
available.

Now, the decision must be made. If all tickets have not been sold,
you must branch to the beginning of the flowchart and resume the
count. If all tickets are sold (if the result of the subtraction is zero),
then ignore the branch and light the “SOLD OUT" sign. Once the sign
is lit, you complete the flowchart with the stop terminal symbol. Al-
though the problem is very simple, there is no way to solve it without
using a decision box and conditional branch in the flowchart.

Self-Review Questions

1. The five most common flowcharting symbols are the:

mHOoO®W»

2. You are permitted to use mathematical symbols in a flowchart.

True/False

3. The flowchart should always begin with a start terminal symbol.

True/False
4. The in a flow-
chart corresponds to the unconditional jump in the actual pro-
gram.
5. The in a flow-

chart corresponds to the conditional jump in the actual program.

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 3-67.

3-15

3-16 | uniTTHREE

JUMPS

The programs in Unit 2 used the “straight line” method of processing
code. That is, the instructions in those programs were executed one
after another. As you found out, programs of this type can be limited
in scope. As an example, let’s take another look at the multiply-by-
repeated-addition program from Experiment 2. Refer to Figure 3-11.

TITLE EXPERIMENT 1 -- PROGRAM 2 -- SIMPLE MULTIPLICATION
i

ASSUME CS:COM_PROG, DS:COM_PROG, S5: COM_PROG

COM_PROG SEGMENT ;Beginning of program segment
]
MULTI EQU 7 ;Equate program multiplicand value
ORG 190H ;COM programs always start here
START: SUB AL, AL 1Clear the PRODUCT register
MOV BL,MULTI ;0et the multiplicand,
ADD AL,BL sthen perform the
ADD AL, BL smultiplication operation
ADD AL,BL sby adding the multiplicand
ADD AL, BL sto the PRODUCT register
ADD AL,BL 15 (multiplier) times
MOV PRODUCT, AL ;Store the product
¥
PRODUCT DB] ;Reserve one byte in memory
sand initialize the byte to @
COM_PROG ENDS jEnd of program segment
END START 1End of program, point to beginning
Figure 3-11

Multiplication program from Experiment 2.

The program multiplies the number 7 by the number 5. This works
well enough as long as the multiplier is a relatively small number.
But, if the multiplier is 50, then the length of the program becomes
prohibitive both in time invested to write the program and memory
used to store the program. Obviously, some better technique must be
employed.

Virtually every program uses a programming method called the loop.
The loop allows a section of the program to be run as often as needed.
For instance, to multiply 7 by 50 in our multiply program, you simply
delete all but one of the ADD instructions, and then repeat that instruc-
tion 50 times. The 8088 MPU has a number of instructions that allow
you to create a loop. Among these are the jump instructions, the subject
of this section.

Program Transfer Instructions 3'1 7

Unconditional Jump

Although there are a number of jump instructions, for now, we will
only consider the unconditional jump instruction. The unconditional
jump instruction has one mnemonic, JMP, that can assume three differ-
ent characteristics depending on how it is used in a program. The three
characteristics are jump short, jump normal, and jump far. Each allows
the microprocessor to escape the straight line instruction sequence by
altering the direction of program flow. That is to say, these instructions
alter the contents of the IP register, thereby changing the sequence in
which the instructions in a program are executed. For now, we will
limit our discussion to short and normal jumps.

The jump short instruction uses a signed, 8-bit offset value that allows
a “jump” range of 256 bytes of memory. It does this by causing a forward
jump of up to +127 bytes or a backward jump of up to —128 bytes.
The ability to span 256 bytes of memory constitutes a “short” jump.

The jump normal instruction is similar to the jump short instruction,
only it uses an unsigned, 16-bit offset value. Thus, it can cause a for-
ward jump of up to 65,536 bytes. This is the default jump used by
the MACRO-86 assembler.

Both the short and normal jumps are what we call intrasegment jumps;
they occur within the 64K boundary of a program segment.

Each time you use a JMP instruction, you must specify the instruction’s
target. The target is the place, or memory location, in the program to
which you wish to jump. However, before you can understand how
to specify the target, you should understand how the address of the
target is calculated.

DIRECT JUMPS

A JMP instruction is generally considered to be direct, when its operand
contains a relative displacement value. When you write a direct J]MP
instruction, you identify the memory location, or target, of the jump
with a label in the operand field. The assembler then calculates the
relative displacement by identifying the offset address of the target.
Let’s see how this process works.

3-18 | uniT THREE

Figure 3-12 is our simple multiplication program that has been mod-
ified by the deletion of a few ADD instructions and the addition of
a JMP instruction and a target label. The JMP instruction alters the
sequence of program execution and, as a result, reduces the number
of ADD instructions necessary in the program. The label TIMES serves
as the target of the JMP instruction.

TITLE UNIT 3 -- PROGRAM | —- MULTIPLICATION THROUGH A LOOP

3
COM_PROG SEGMENT ;Beginning of program segment
ASSUME CS:COM_PROG, DS:COM_PROG, $S: COM_PROG

MULTI EQU 7 sEquate program multiplicand value
ORG 100H sCOM programs always start here
START: SUB AL,AL ;Clear the PRODUCT register
MOV BL,MULTI 3Get the multiplicand, then perform
TIMES: ADD AL,BL ;the multiplication operation by
JP TIMES srepeating the addition operation
MOV PRODUCT, AL 3Store the product
¥
FRODUCT DB 9 ;Reserve one byte in memory
jand initialize the byte to 0
COM_PROG ENDS $End of program segment
END START 3End of program, point to beginning
Figure 3-12

Multiplication using repeated addition and a direct jump.

When the assembler “sees” the JMP instruction with the specified target
in its operand field, the assembler calculates a displacement relative
to the present contents of the Instruction Pointer and the instruction
containing the target label. It then stores this displacement as the
operand of the JMP instruction. When the program is run, and the J]MP
instruction executed, the MPU adds the displacement value to the con-
tents of the IP. As you know, the IP always points to the next instruction
to be executed. Adding the displacement to the IP causes the IP to
now point to the target specified in the JMP instruction.

The relative displacement is a number which indicates either a forward
jump, further into the program, or a backward jump, to some point
already past. This is handled in one of two ways. In a short jump,
the displacement can be either a positive or a negative 8-bit value as
described earlier. If the jump is forward, the displacement is a normal
8-bit value. However, if the jump is backward, the displacement is a
2s complement of the 8-bit negative value.

Program Transfer Instructions 3"1 9

In a normal jump, the displacement is an unsigned 16-bit value that
is added to the contents of the IP register. Backward jumps are handled
by the address “wraparound” process described earlier. For example,
suppose you wanted the program to jump backward, from address offset
0112H to address offset 010CH. The assembler would calculate a dis-
placement value of OFFFAH and place it in the operand. Thus, when
the jump is executed, the jump target is determined by adding the jump
displacement to the contents of the IP to produce a new IP value that
points to the specified target. The calculation follows:

DISPLACEMENT OFFFAH
IP REGISTER + 0112H

TARGET 1010CH

Notice that the calculation exceeded the 16-bit capacity of the IP regis-
ter. The overflow of one is ignored, producing the new IP value 010CH.

By now, you may be wondering what determines the type of jump
(short or normal) used. The assembler makes that determination by
identifying the offset of the target. If it is within the 256-byte boundary
of the JMP instruction, an 8-bit displacement is automatically gener-
ated; otherwise, a 16-bit displacement is generated.

Direct jumps are by far the most common type of unconditional jump.
There is, however, another form called the indirect jump.

INDIRECT JUMP

A direct jump contains a relative displacement value in its operand
to point to the jump target. The indirect jump, on the other hand, uses
one of the MPU general registers to hold the “actual address” of its
jump target. When an indirect jump instruction is executed, the con-
tents of its “address” register are used to replace the contents of the
IP register. For example, after the instructions

MOV BX, OFF3EH
JMP BX

are executed, the contents of the IP register are replaced with the value
OFF3EH. Thus, the next instruction to be executed is located at address
offset OFF3EH.

3-20 | uniT THREE

Conditional Jumps

All JMP instructions are unconditional. That is, when the MPU encoun-
ters a JMP instruction, it will always execute that instruction. Look
at Figure 3-12 once more. You should discover a problem. The program
loops back to the ADD instruction well enough, but it will continue
to perform this loop forever. There is no provision in the program to
get out of, or exit, the loop.

In order to exit the loop, the MPU must make a decision; namely, when
should the loop be terminated? The ability to make a decision is, after
all, the real power of the microprocessor. Before the MPU can make
that decision, it must have information on which to base the decision.

THE FLAG REGISTER

The 8088 MPU bases its “decisions” on the contents of the Flag register.
The Flag register is a 16-bit register that contains, among other things,
information about the last mathematical or logical operation performed.
(From now on, we'll call these operations arithmetic operations.) Six
bits, or flags, within the Flag register actually contain information about
these arithmetic operations. They are called condition code flags. Figure
3-13 shows the location of the six condition code flags in the Flag
register.

FLAG REGISTER
A

N
L L [[off | T [selze[[ar] [ee] [cF
T 6 4

11 2 0

/

Figure 3-13
The condition code bits in the Flag register.

Like all other registers within the 8088 MPU, the contents of the condi-
tion code flags can be either ones or zeros. If the contents of a particular
flag is one, we say that flag is set. On the other hand, if the flag contains
a zero, then we say that flag is clear.

Program Transfer Instructions 3"21

The first flag we will describe is the CF, or carry flag. This flag is
set if there is a carry out of, or a borrow into the most significant bit
in either 8-bit or 16-bit arithmetic operations, as shown in Figure 3-14.
If the last arithmetic operation did not cause a carry or borrow, the

CF will be clear.

CARRY

‘\ MS8B

BORROW

CARRY

B MSBl

| ||

U

BORROW

Figure 3-14
Conditions that set the Carry flag.

The next flag is the PF, or parity flag. The 8088 MPU sets the parity
flag if the result of a byte-sized arithmetic operation has an even number
of 1-bits. That is, if the result of an add operation is 11000011B, the
parity flag is set because the result contains an even number of 1-bits.
Likewise, if the result of the last math operation is 00000001B, the
PF is clear, indicating an odd parity for the result. If you perform an
arithmetic operation using a 16-bit register, the parity flag will only

test the low byte for parity.

3-22 | uniT THREE

The third flag is the AF, or auxiliary carry flag. Two conditions will
cause this flag to be set. The first is a borrow from bit 4 of a byte
during an arithmetic operation involving an 8-bit quantity. The second
condition that will cause this flag to be set, is a carry from bit 3 during
an 8-bit arithmetic operation. This is shown in Part A of Figure 3-15.
As Part B shows, a carry out of bit 3 to bit 4, or a borrow from bit
4 to bit 3 during a 16-bit arithmetic operation will also set the auxiliary
flag. Therefore, whether you are dealing with an 8-bit or a 16-bit arith-
metic operation, bits 3 and 4 affect the status of the auxiliary flag.

CARRY

BORROW
CARRY
Blwis|w|w|w2|unfwo|sls|7]6|ls]la|3l2|1]o
BORROW
Figure 3-15

Conditions that set the Auxiliary Carry flag.

The fourth flag shown is the ZF, or zero flag. This flag bit is set only
if the result of the last arithmetic operation is zero. If the result of
the last arithmetic operation is a number other than zero, this bit is
clear.

The fifth flag shown in the register is the SF, or sign flag. This flag
is set if the result of the last arithmetic operation performed is less
than zero. That is, it is set if the last arithmetic operation resulted
in a negative number. If the result of the last arithmetic operation was
zero, or a positive number, then this flag is clear. During an arithmetic
operation, the MPU treats the most significant bit as the sign bit. If
the bit is zero, the MPU assumes the result was positive, and it clears
the sign flag. By the same token, if the most significant bit is one,
the MPU assumes the result was negative, and it sets the sign flag.

Program Transfer Instructions 3‘23

The last flag we will discuss is the OF, or overflow flag. This flag
is set if the result of the last arithmetic operation is larger than the
destination location. Recall that we said the MPU considers the most
significant bit the sign bit. Thus, the largest value that the MPU will
recognize is a 7-bit or 15-bit value. Naturally, all 8 or 16 register bits
are still used, but the MPU indicates an overflow into the most signifi-
cant bit by setting the overflow flag. Because the result of an arithmetic
operation could fool the MPU with regard to an overflow condition,
the MPU makes two tests. First, it checks for a carry into, or a borrow
from, the most significant bit. Next, it checks for a carry out of, or
a borrow into, the most significant bit. These conditions are shown
in Figure 3-16. If there was no carry, or if there was a carry into and
out of the most significant bit, the OF is clear. If, on the other hand,
there was a carry into or out of the most significant bit, the OF is
set. As before, a borrow is treated the same as a carry.

CARRY CARRY

1A
A |uss I |
P 7

BORROW BORROW

CARRY CARRY

B jrsel | | I

BORROW BORROW

Figure 3-16
Conditions that affect the Overflow flag.

3'24 UNIT THREE

THE CONDITIONAL JUMP INSTRUCTIONS

The 8088 MPU instruction set has a number of conditional jump in-
structions. These instructions are used to make decisions concerning
the flow of the program. That is, if a certain set of conditions exist,
the program will continue in a straight line. However, if another set
of conditions exist, which are unique for each instruction, the MPU
makes the decision to take the conditional jump. During the execution
of a conditional jump instruction, the MPU tests the contents of the
Flag register or, to be more specific, tests the contents of certain bits
in the Flag register.

The conditional jump instructions are listed in Figure 3-17. In this
figure, the first column contains the mnemonics for the various condi-
tional jump instructions.

CONDITIONAL JUMP IF: JUMP IS TAKEN IF:
JUMP
INSTRUCTION
IA ABOVE {CF OR ZF) = 0O
JNBE NOT BELOW NOR EQUAL {CF QR ZF) = 0
JNB NOT BELOW CF=0
JAE ABOVE OR EQUAL CF=0
JB BELOW CF=1
JNAE NOT ABOVE NOR EQUAL CF=1
IC CARRY CF=1
JBE BELOW OR EQUAL {CF OR ZF) =1
JNA NOT ABOVE (CF OR ZF) =]
JE EQUAL ZF=1
1Z ZERO ZF=1
JNLE NOT LESS NOR EQUAL [{SF XOR OF) OR ZFl=0
JG GREATER [(SF XOR OF) OR ZF]=0
JLE LESS OR EQUAL [{SF XOR OF) OR ZFl=1
ING NOT GREATER ({SF XOR OF) OR ZFI=1
JNL NOT LESS {(SF XOR QF) = 0
JGE GREATER OR EQUAL (SF XOR QF) = 0
JL LOWER THAN (SF XOR OF) = 1
INGE NOT GREATER NOR EQUAL (SF XOR OF) = 1
JNC NO CARRY CF=0
INE NOT EQUAL ZF=0
INZ NOT ZERO ZF=0
INO NOT OVERFLOW 0F=0
INP NO PARITY PF=0
JPO PARITY ODD PF=0
JNS POSITIVE SF=0
10 OVERFLOW 0F=1
JP PARITY ~ PF=l
JPE PARITY EVEN PF=1
1S SIGN SF=1
Figure 3-17

Conditional jump instructions.

Program Transfer Instructions 3'25

The second column states the conditions that must be present if the
jump is to occur. For example, the conditions for the JNZ instruction
are jump if the result of the last arithmetic operation is not zero, or
jump if not zero. As you can see, the mnemonic JNZ is an abbreviated
form of this statement.

The third column shows the flag, or flags, that are tested and any logic
combination that occurs during the testing. An OR in this column indi-
cates that the MPU performs a logical inclusive OR operation on the
contents of the specified flags. Likewise, an XOR in this column indi-
cates a logical exclusive OR operation. These logic operations are done
automatically by the MPU when it executes the conditional jump in-
structions.

USING THE CONDITIONAL JUMP

The conditional jump instructions have two things in common with
the unconditional jump short instruction. First, all conditional jump
instructions are direct jumps; there are no indirect conditional jumps.
Second, the conditional jump is limited to a range of 256 bytes. It can
cause a forward jump of up to +127 bytes or a backward jump of
up to — 128 bytes.

Now that you are familiar with the Flag register and some of the
mathematical operations that the MPU can perform, let’s see exactly
how a conditional jump instruction works.

Most programs make some type of decision. Some frequently encoun-
tered decisions are:

“Which number is larger?”
“Are these two numbers equal?”
“Is this an even number of bits?”

“Has the program loop been repeated enough times?”

3'26 UNIT THREE

Conditional jumps are used to make these decisions. To see how this
is done, let’s look at our multiplication program one more time. This
time, however, the unconditional jump is replaced with a conditional
jump. The conditional jump is used to decide when the program is
finished. To do this, the MPU must decide if a number is or is not
zero, Figure 3-18 shows the program.

TITLE UNIT 3 —— PROGRAM 2 -— CONDITIONAL LOOP MULTIPLICATION

1
COM_PROG SEGMENT jBeginning of program segment
ASSUME CS:COM_PROG, DS: COM_PROG, 5S: COM_PROG

1
MULTIPLICAND EQU T
MULTIPLIER EQU S
|]
ORG 160H sCOM programs always start here
START: SUB AL, AL sClear the PRODUCT register
MOV CL,MATIPLIER ;Set multiplier as operation counter
MoV BL,MULTIPLICAND ;Get the multiplicand, then perform
TIMES: ADD AL,BL sthe multiplication operation by
jadding the multiplicand to itself
s “count®™ times

DEC cL sDecrement the “count” after the add

JNZ TIMES sand repeat if "count” not zero

MoV PRODUCT, AL ;Store the product if “"count™ zero
}
PRODUCT DB 0 jReserve one byte in memory

sand initialize the byte to @

COM_PROG ENDS $End of program segment

END START iEnd of program, point to beginning

Figure 3-18

Multiplication using repeated addition and a conditional
jump to form a program loop.

Notice that we have enhanced a few areas of the program and added
a couple of instructions. First of all, both the multiplier and the multi-
plicand are identified with equate statements. By using the full name
for each symbol, we’ve eliminated the need for comments; and at the
same time, made the program easier to follow.

The first version of this program added the multiplicand value seven
to the AL register five times, to simulate the multiplication operation
7 times 5. In this version, a loop is used to perform the add operation.
The instruction JNZ (jump while not zero — ZF clear) is used to monitor
the loop.

Program Transfer Instructions 3‘27

As before, the multiplicand is loaded into the BL register. The multi-
plier is loaded into the CL register to provide a “count” for the multipli-
cation by repeated addition operation. After each addition operation,
the count is decremented. As long as the count is not zero, the zero
flag is clear.

When the JNZ instruction is executed, the ZF is tested. If the flag is
clear, the condition for a jump is true, and the jump is taken; the pro-
gram loops back to the target label TIMES. As long as the count is
not zero, the loop will continue. When the count reaches zero, the
zero flag will be set. This time, the condition for a jump is false, and
the jump is not taken. Instead, the next sequential instruction is exe-
cuted. When a conditional jump is not taken, we say that the program
“falls through” to the next instruction.

If you follow the program through, you can see that the CL register
will not be zero until the program loop is accomplished five times.
Since the addition occurs five times, you have, in effect, multiplied
the number 7 times the number 5.

It would be nice if the microprocessor could make the proper decisions
without any help from us, but this is not possible. As a programmer,
you must set up the desired parameters for your program and use the
correct instructions in the proper sequence. There are, no doubt, a
number of ways to write this same program that will work just as well
as the example program. One of the most important things about pro-
gramming is to understand exactly how each instruction works before
using it in a program.

Before we look at any more examples of conditional jump instructions,
there is one more arithmetic instruction you should learn. That is the
CMP, or compare instruction. When this instruction is executed, the
source operand is subtracted from the destination operand. The
mathematical subtraction alters Condition flags, but the operands are
unaffected. Examples of this instruction are:

CMP AX,DX
CMP AX,SYMBOL
CMP AX,OFCH

In the first example, the contents of the DX register are subtracted from
the AX register. This operation alters the flags, but does not change
the contents of either register. As the name compare implies, the opera-
tion is simply a comparison.

3"28 UNIT THREE

In the next two examples, the constant is subtracted from the contents
of the AX register. Again, only the flags are affected; the contents of
the AX register do not change.

Now let’s take a closer look at a couple of conditional jumps to give
you an idea of the “considerations” that go into MPU decision making.

First look at the jump if above (JA) instruction in Figure 3-17. You
can see that this instruction tests both the carry flag and the zero flag.
To test these conditions for the conditional jump, the MPU performs
a logical OR operation on the contents of the two flags. The following
program segment demonstrates the use of the JA instruction.

MOV AX,000ZH
CMP AX,0001H
JA THERE

The results of the CMP (compare) operation are quite obvious. Since
the CMP subtracts the source operand from the destination operand,
it is apparent that the result of this operation is a number above zero.
The jump is taken. But, how does the MPU actually make the jump
decision?

First, look at the individual flags that are “considered” during the
execution of the JA instruction. The first flag tested is the carry flag.
As you know, subtracting the number 1 from the number 2 does not
generate either a carry or a borrow. Therefore, the CF, after the execu-
tion of the CMP instruction, is cleared.

The zero flag is also tested when the JA instruction is implemented.
Since the mathematical result of the CMP instruction is not zero, this
flag is also cleared.

The MPU now does a logical inclusive OR using the contents of the
two flags. If you check the conditions listed in column three of Figure
3-17, you will see that the results of the calculations satisfy these condi-
tions and the jump is taken. If either the CF or the ZF had been set,
the OR operation would have produced a one, and the jump would
not be taken.

As long as the mathematical result in the AX register for this program
is above 1, the jump will be taken.

Program Transfer Instructions 3‘29

There is some difficulty, however, if you are dealing with signed num-
bers. The 2s complement of a negative number may be, at least in mag-
nitude, greater than a positive number. For example, if the 2s comple-
ment for —1, OFFFFH, is in the AX register, then the JA is taken even
though this number is, in reality, less than one. This occurs because
the JA instruction does not test the sign flag. Therefore, the JA instruc-
tion should only be used when dealing with unsigned numbers.

If you must work with signed numbers, you will have to use an instruc-
tion that tests the sign flag. An example of this type of instruction
is the jump if greater (JG) instruction.

A glance at Figure 3-17 will confirm that the JG instruction does indeed
test the sign flag. However, it also tests the overflow and zero flags.
Let's look at an example where JG could be used:

MOV AL,OFH
CMP AL,OFFH
JG THERE

In this program segment, the immediate value OFFH is compared to
the contents of the AL register, OFH. The result of the compare is a
signed number less than zero. The compare operation does not generate
an overflow, since the result of the operation is not larger than eight
bits. Therefore, the overflow flag is zero.

The compare operation, however, did result in a negative number.
Hence, the sign flag is set to indicate that the result is less than zero.

The MPU now accomplishes the first part of a 2-part decision. An exclu-
sive OR operation is performed on the contents of the sign and overflow
flags. This operation produces a one.

Next, the MPU checks the contents of the zero flag. The result of the
compare operation is not zero, so the ZF is clear, or zero. Now the
contents of the ZF is ORed with the result of the previous exclusive
OR operation. Again, the result is a one.

However, the conditions stated in Figure 3-17 indicate that the jump
if greater operation will be taken only if the result of the logical process-
es on the contents of the flag register is zero. Since this is not the
case, the jump is not taken, and the program falls through to the next
instruction.

3'30 UNIT THREE

All of this may seem pretty complex. Setting flags, comparing results,
and making decisions can get confusing, to say the least. One consola-
tion, though, is the fact that all of the computations take place within
the MPU. You will never see the actual computations occur; only the
effect that they have on your program. You must always be extremely
careful, however, that you present the correct instructions in the correct
format, so that the MPU will act as you want it to in your program.

Self-Review Questions

6. Virtually every program uses a technique called a

7. State the purpose of the loop.

8. The instruction allows the microprocessor to
escape the straight line program sequence.

9. Each time you use a jump instruction, you must specify the in-
struction’s

10. The is the place, or memory location, in
the program to which you wish the program to jump.

11. When the address of the target is calculated using a relative value,
the instruction is said tobe a jump.

12. In a/an jump, the address of the target
is contained in a register. This address replaces the contents of
the IP register when the instruction is executed.

13. What is the real power of the microprocessor?

Program Transfer Instructions 3'31

14.

15.

16.

17.

18.

The 8088 MPU bases its decisions on the contents of the
register.

The CMP instruction subtracts the source operand from the desti-
nation operand and stores the result in the AX register.

True/False

The jump instruction removes the
MPU from the decision making process.

The JNZ instruction will cause the program to jump to the target
if the zero flag is

The e instruction should not be used with signed arith-

metic operations.

3'32 UNIT THREE

LOOPS

The jump instructions are powerful programming tools, in that they
can force an unconditional change in what would otherwise be a
straight-line program. They can also provide a form of artificial intelli-
gence and alter the sequence, given specific conditions. The “condi-
tional jump” often takes the form of a program loop, or set of instruc-
tions that repeat in a cycle. However, once in a loop, it is often necessary
to manipulate data in the general registers or test the jump “condition
flags” in order to get out of the loop. This is shown in Figure 3-18,
our multiplication-through-repeated-addition program.

TITLE UNIT 3 -—- PROGRAM 2 -- CONDITIONAL LOOP MULTIPLICATION

i
COM_PROG SEGMENT jBeginning of program segment
ASSUME CS:COM_PROG, DS:COM_PROG, SS:COM_PROG

J
MULTIPLICAND EQU 7

MULTIPLIER EQU 5
3

ORG 100H ;COM programs always start here
START: SUB AL, AL ;Clear the PRODUCT register

MOV CL,MULTIPLIER ;Set multiplier as operation counter
MOV BL,MULTIPLICAND ;Get the multiplicand, then perform
TIMES: ADD AL,BL jthe multiplication operation by
;adding the multiplicand to itself
;"count® times

DEC cL sDecrement the "count" after the add

JNZ TIMES sand repeat if "count"” not zero

MOV PRODUCT, AL ;Store the product if "count" zero
H
PRODUCT DB [iReserve one byte in memory

sand initialize the byte to @

COM_PROG ENDS sEnd of program segment

END START ;End of program, point to beginning

Figure 3-18

Multiplication using repeated addition and a conditional
jump to form a program loop.

The DEC instruction reduces the loop “count” after every ADD opera-
tion. The JNZ instruction causes the loop to continue until the count
is zero. At that time, the program falls through to the next instruction.

Although the jump instructions as a group are a handy way to create
a program loop, there is another set of instructions that, in most cir-
cumstances, do a better job. These are, as you might have guessed,
called loop instructions. Like the jump instructions, loop instructions
can take two forms: conditional and unconditional loops. Let’s take
a look at the unconditional loop instruction first.

Program Transfer Instructions 3'33

Unconditional Loop

The instruction LOOP is considered an unconditional instruction. It
transfers control to the instruction indicated by the target operand, re-
gardless of Flag register condition. So how, you might ask, does the
program get out of the loop?

This is controlled by the CX register. Earlier, we said the CX register
was simply a general register that could handle high and low bytes
(8 bits per byte), as well as words (16 bits) of data. It also serves as
the Count register for loop instructions. Hence its common name,
“Count register.”

The “count down” process works like this: First, a value is stored in
the Count register. Now every time the LOOP instruction is executed,
the Count register is automatically decremented, and then it is tested
to see if it is zero. When the register value becomes zero, the “loop”
is ignored, and the program falls through to the next instruction. Natur-
ally, you shouldn’t try to store data in the CX register during a loop.
You could wind up looping forever. To see how the LOOP instruction
works, let’s examine a modified version of our multiplication-through-
repeated-addition program. Refer to Figure 3-19.

TITLE UNIT 3 — PROGRAM 3 -— UNCONDITIONAL LOOP MULTIPLICATION

i
COM_PROG SEGMENT ;Beginning of program segment
ASSUME CS:COM_PROG, DS: COM_PROG, SS: COM_PROG

MULTIPLICAND EQU 7

MULTIPLIER EQU 5
‘ ORG 100H ;COM programs always start here
START: SUB AL, AL sClear the PRODUCT register

MOV CX,MULTIPLIER ;Set multiplier as operation counter
MOV BL,MULTIPLICAND ;Get the multiplicand, then perform
TIMES: ADD AL, BL ;the multiplication operaticn by
;adding the multiplicand to itself
1 "count" times

LOOP TIMES sDecrement the "count" after the add
sand repeat if "count® not zero
MOV PRODUCT , AL 1Store the product if "count" zero
3
PRODUCT DB @ ;Reserve one byte in memory
sand initialize the byte to @
COM_PROG ENDS ;End of program segment
END START 3End of program, point to beginning
Figure 3-19

Using the unconditional LOOP instruction.

3'34 UNIT THREE

Compared to the previous program, the LOOP instruction has reduced
the physical length by only one instruction. That would seem hardly
worth the effort, until you analyze where the instruction was deleted.
Notice that DEC was removed from the “loop.” Now, if you run the
program using a multiplier of 1000, you will find the program has been
effectively reduced from a length of 3004 instruction executions to 2004
instruction executions. This is a substantial savings.

One other change in the program occurred in the instruction that loads
the multiplier. The register name was changed from CL to CX to meet
the requirement of a count register.

Related to the unconditional LOOP instruction is the conditional, jump
if count register zero (JCXZ) instruction. Essentially, it directs the pro-
gram to jump to the address specified by its operand if the contents
of the CX register is zero. This may appear insignificant, until you
consider the consequences. Often, the data loaded into the Count regis-
ter is a variable. Depending on the program application, the data could
be any value between 0 and OFFFFH. Now when a LOOP instruction
is executed, the first step is to decrement the Count register. If the
count was zero before the register was decremented, it will be OFFFFH
after the register is decremented. Thus, when the register is examined
for zero, the second step in the LOOP instruction, zero will not be
found and the program will loop to the indicated address.

Because OFFFFH is now in the Count register, the program will have
to loop that many more times before it can escape; normally an undesir-
able condition. By placing the JCXZ instruction just after the instruction
that loads the Count register and before the program loop, you make
sure the program jumps around the loop when the Count register is
zero. Figure 3-20 is an example of how JCXZ could be implemented.

Program Transfer Instructions 3'35

TITLE UNIT 3 -- PROGRAM 4 -- UNCONDITIONAL LOOP MULTIPLICATION

1
COM_PROG SEGMENT
ASSUME CS1COM_PROG, DS:COM_PROG, 552 COM_PROG

i
MULTIPLICAND
MULTIPLIER

START:

TIMES:

DONE:
PRODUCT DB

COM_PROG ENDS
END

EQU 7

EQU 5
100H

AL, AL
CX,MULTIPLIER
DONE

BL, MULTIPLICAND
AL,BL

TIMES
PRODUCT, AL

9

START

;Beginning of program segment

;COM programs alwags start here
;Clear the PRODUCT register

;Set multiplier as operation counter
jMultiplier zero, can’t multiply
;Get the multiplicand, then perform
sthe multiplication operation by
jadding the multiplicand to itself
s“count™ times

1Decrement the “count” after the add
sand repeat if “count®™ not zero
iStore the product if "count™ zero

;Reserve one byte in memory

jand initialize the byte to @

jEnd of program segment

;End of program, point to beginning

Figure 3-20

Testing the count register for zero, before a loop.

Again, we've used our multiply-through-repeated-addition program.
The JCXZ instruction is placed so that it can check the value of the
multiplier before the multiplication loop. If CX is zero, the program
is forced to jump to the target label DONE. Any other value allows
the program to fall through the JCXZ instruction to the next MOV in-
struction. While you are not required to use the JCXZ with the LOOP
instruction, it is a good practice to do so when you have no control
over the data that will be moved into the Count register.

3‘36 UNIT THREE

Conditional Loop

Recall from our discussion on jumps, that a conditional instruction,
by its nature, relies on a flag to determine whether the instruction
should be executed or ignored. This is also true of the conditional loop
instructions. However, in addition to responding to a flag, the condi-
tional loop will also respond to the status of the Count register. Re-
member, every loop instruction relies on the Count register to deter-
mine the number of “loops” that should be executed. The flag simply
determines whether the “conditions” are right for another loop. Thus,
if the Count register content is zero, the loop will not be executed,
regardless of flag condition. On the other hand, if the required flag
condition occurs before the Count register reaches zero, the program
will stop “looping” and proceed to the next instruction.

Each conditional loop instruction uses the zero flag to test program
conditions. Depending on the instruction, execution will stop if the
zero flag is set or clear. The four conditional loop instructions are:

LOOPE — Loop while equal
LOOPZ — Loop while zero
LOOPNE — Loop while not equal
LOOPNZ — Loop while not zero

However, there are only two conditional loop opcodes. This is because
there are only two assigned conditions to be met. Either the zero flag
(ZF) is set, meaning the previous arithmetic operation produced a zero
result; or the zero flag is clear, meaning the previous arithmetic opera-
tion produced a value other than zero. Both LOOPE and LOOPZ will
cause the program to loop if ZF = 1. More precisely, the loop will
occur if ZF = 1 and CX # 0 (CX does not equal 0). By the same token,
both LOOPNE and LOOPNZ will cause the program to loop is ZF =
0and CX # 0.

Now this may seem an attempt to add complexity to an already complex
subject. However, these instruction pairs are not truly redundant from
a programming point of view. They help maintain a continuity in pro-
gram concept. For Example, consider this section of a program:

CMP AX,DATA ; AX equal DATA?
LOOPE COUNT ;Yes, repeat count
MOV ANS, BX ;No, store value

Program Transfer Instructions 3"37

Assuming the Count register contains some value greater than one at
this time, what'’s this section of program doing? The first line compares
the word value found at address DATA and the accumulator. If the
values are equal, the zero flag is set; if not, the ZF is clear. Then the
“loop if equal” instruction decrements the Count register and checks
for zero. Since CX does not equal zero, the zero flag is checked. This
indicates whether the values in the previous operation were equal (ZF
= 1) or not (ZF = 0). If the contents of the accumulator do not equal
the contents at DATA, no loop is performed, and the next instruction
is executed, storing the contents of the BX register at address ANS.

The key word in this example is equal. Does the value in the ac-
cumulator equal the value at DATA? Loop if the result of the previous
arithmetic operation is equal. LOOPZ would have given the same re-
sults, but it would not have “read” the same. Likewise, you would
not perform a subtraction and then “loop if equal.” You would use
the “loop if zero” instruction.

Thus, you have two loop instructions that give the same result, but
are used for different reasons. LOOPNE and LOOPNZ are another exam-
ple of one opcode with two different mnemonics or meanings.

Loop Addressing

All loop instructions are Instruction Pointer-relative. That is, they can
only transfer to target addresses that are within —128 to + 127 bytes
of the Instruction Pointer. Another way of stating this is: they are
SHORT transfer instructions. Thus, the effective address of the transfer
is calculated in the same manner as described for conditional jumps.

Self-Review Questions

19. An operation will affect the condition
of the Flag register.

20. The flag is tested when a LOOPE instruction
is executed.

21. The LOOP instruction is considered a conditional instruction.

True/False

3'38 UNIT THREE

22,

23.

24.

25.

26.

27.

What is the first step performed when the LOOP instruction is
executed?

The instruction is used to test the CX register
for zero.

The LOOPE instruction is considered a conditional instruction.

True/False

If the Zero flag is clear, the LOOPE instruction will execute a
program loop.

True/False

What other instruction has the same opcode as the LOOPNE in-
struction?

The maximum distance a program can loop backward with the
LOOQOP instruction is bytes.

Program Transfer Instructions 3'39

EXPERIMENT

Program Transfer

OBJECTIVES: 1. Demonstrate program branching
through the use of conditional and un-
conditional jumps and loops.

2. Demonstrate the effect arithmetic op-
erations have on the Flag register.

3. Demonstrate the flowcharting proc-
ess.

Introduction

The last experiment got you started on assembly language program-
ming, but you were limited to straight-line programs. Sequential execu-
tion of the program instructions is a useful and important part of almost
every program. However, that form of programming doesn’t allow the
microprocessor the opportunity to make processing decisions. This ex-
periment resolves that problem by covering all of the aspects of program
transfer using the jump and loop instructions.

We will begin by examining the effect arithmetic instructions have on
the six condition code flags in the Flag register. Knowing how these
flags respond is a prerequisite for understanding the conditional jumps.

3'40 UNIT THREE

Procedure

The program in Figure 3-21 exercises each flag to give you an
opportunity to see how a flag responds to a particular operation.
At the same time, it introduces three flag manipulation instruc-
tions. You will find that they can be useful for presetting a flag
prior to an operation.

Call up your editor and enter the program listed in Figure 3-21.
(We will refer to this program as PROG1.ASM.) Notice that we
have introduced a new type of comment at the beginning and
near the middle of the program. Programmers often use this type
of comment to highlight or give a short overview of a program
section. This can be very handy when you have a multisection
program and you are looking for a particular operation. Naturally,
the semicolons preceding each line identify these overviews as
comments to the assembler.

Assemble the program. Type the command “MASM
PROG1,PROG1,PROG1,PROG1;” and RETURN. This is a quick
method for getting the assembler to generate all of the appropriate
files. Notice that you only have to identify the program name,
without the file extension, for each file to be generated. The first
name identifies the ASM file; the next, the OB]J file; the next,
the LST file; and the last, the CRF file.

Now finish generating the COM file. Type “LINK PROG1” and
RETURN. When the linker is finished, type “EXE2BIN
PROG1.EXE PROG1.COM” and RETURN.

Call up the debugger and load your program into memory. Type
“DEBUG PROG1.COM” and RETURN. Now type “R” and RE-
TURN. The debugger has loaded your program into memory, dis-
played the register contents, and listed the first instruction of
your program.

Program Transfer Instructions 3‘41

TITLE EXPER

IMENT 3 -~ PROGRAM 1 -— FLAG MANIPULATION

1
COM_PROG SEGMENT jBeginning of program segment
ASSUME CS:COM_PROG, DS: COM_PROG, SS: COM_PROG

FAXXAANN XXX
3This part
sthe conten
§XXXRXXXXKK
i
'

ORG
START: MOV

ADD
ADD
SUB
ADD
SUB
ADD
ADD
(ol
cHp
ADD
SUB

- -

RXXXXKX XXX
jDirect man
jcontrol in
§XXXXXXRANX

- -

AXHXAXAAXXNAXXKAXKKXRNXXARKKAAXKXRKAXARK AR XK KA XK KA XX KN K XK N RN
of the program uses arithmetic instructions to indirectly modify x
ts of the Condition Code bits in the Flag register. %
NUMOCH MMM MMM RN RE N A NAN M RRR KRR R KT RN AR MR KRR AN R XA AR R AL RA KK

100H ;COM programs always start here

AX,0 ;1 Clear the AX register
jwithout affecting the flags

AL, 1 32 Add 1 to 8-bit register

AL, oFH 13 4-bit auxiliary carry

AL, 1 14 A4-bit auxiliary borrow

AL,71H 15 Clear AL and set MSB=1

ALyl 16 Borrow from MSB

AL, 1 37 Carry into MSB

AL, 7FH 18 Fill AL with 1’s

AL, OFFH 19 Is AL all 1's?

AL,0 110 Is AL zero?

ALyl 311 Overflow AL register

AL, ;12 Borrow into AL register

Ax,1 113 8-bit carry into AN?

AX, OFEFFH 314 Fill AX with 1’s

AX,1 315 Overflow AX register

AX,e 116 Is AX zero?

AX,OFFFFH 317 Is AX all 177

AX,1 ;18 Borrow into AX register

AX, 7FFFH $19 Clear AX and set MSB=1

AX,1 326 Borrow from MSB

AX,1 321 Carry into MSB

AX, 7FFFH 322 Fill AX with 1's

AX 123 Add 1, no carry

AX 124 Subtract 1, no borrow

KARRRKXKARRXRKRRKA XA R ARKR KRR RNKARRA AR T KN KRR RKA XA XA KRR AR KKK XA KRN

ipulation of the Carry flag is possible with the Carry flag X
structions. These instructions follow. X
KEXKKKXXMAKARKA KX A KA X AR R K KA AR UK KRR A AR AKX AR XXX KR X KA RK AR KA E XA A ANRR AN

STC ;25 Set Carry flag
CcLC 126 Clear Carry flag
cMC 727 Complement Carry flag
H
COM_PROG ENDS sEnd of program segment
END START ;End of program, point to beginning
Figure 3-21

Program to manipulate the contents of the Flag register,

3'42 UNIT THREE

As you single-step through the program instructions, keep your
eye on the AX register and the eight flag status indicators. Figure
3-22 shows the debugger symbol used for each flag bit in its set
and clear condition. For this experiment, however, you are inter-
ested in the six arithmetic operation condition code flags. These
are identified by the letters NV, PL, NZ, NA, PO, and NC, which
indicate that all of the flags are clear at this time.

FLAG NAME SET CLEAR
Overflow ov NV
Direction DN Decrementing UP Incrementing
Interrupt El Enabled DI Disabled
Sign NG Negative PL Plus
Zero ZR Nz
Auxiliary Carry AC NA
Parity PE Even PO Odd
Carry CY NC
Figure 3-22

Debugger Flag register bit status symbols.

Now single-step though the program, using the “T” (trace) debug-
ger command, and observe the effect each instruction has on the
AX and Flag registers. The comments in the program are num-
bered to help you follow the program.

Step 1, the first instruction, may seem like a waste of time. The
register is already zero. Remember, however, you should never
rely on a register being zero. If it must start out zero, then make
it zero. We used the MOV AX,0 instruction instead of SUB AX,AX
because we didn’t want to affect the flags. Recall that only arith-
metic operations affect the flags.

Step 2 adds one to the AL register in preparation for the next
step. The flags are affected by this operation, but none of the
values changed.

Step 3 adds 15 to the AL register. Because there is a carry from
the fourth bit to the fifth bit (assuming the first bit is bit 1 and
the last bit is bit 8), the Auxiliary Carry flag is set (AC).

Program Transfer Instructions 3"43

Step 4 subtracts one from the AL register. This time, there is
an auxiliary borrow from the fifth bit. An auxiliary borrow is
the same as an auxiliary carry, as far as the Auxiliary Carry flag
is concerned, so the flag is again set. In addition, the AL register
now contains an even number of ones, so the Parity flag is set
(PE).

Step 5 zeros the lower seven bits in the AL register, leaving the
eighth bit, the most significant bit (MSB) set. Again, there was
an auxiliary carry, setting the flag (AC). In addition, the Sign
flag (NG) and Overflow flag (OV) are set. This may be difficult
to understand, since the program appears to be processing posi-
tive numbers, and there was no overflow out of the register. You
know that the MPU can add and subtract 8- and 16-bit numbers.
It can also process signed (positive and negative) numbers. A
positive number is indicated by a zero in the most significant
bit of the register, while a negative number is indicated by a one
in the MSB. Because the MPU can'’t tell if you are processing
signed or unsigned numbers, it must assume you could be proc-
essing either type. Therefore, the Sign flag will always echo the
condition of the MSB, after an arithmetic operation.

The Overflow flag is a little more tricky. It looks for a carry into
the MSB and a carry out of the MSB. It then uses an exclusive
OR operation to determine the condition of the flag bit. If there
was no carry, or if there was a carry into and out of the MSB,
the Overflow flag is cleared (NV). If, on the other hand, there
was a carry into the MSB, but no carry out of the MSB, the Over-
flow flag is set. In step five, there was a carry into the MSB,
but no carry out of the MSB. Therefore, the Overflow flag is set
(OV). Now you may wonder how you can determine whether
the carry that set the Overflow flag was into or out of the MSB.
It’s really quite simple. Check the Carry flag. If it is set, then
you know the carry was out of the MSB. By the same token,
if the Carry flag is cleared (NC), the carry was into the MSB.

One last flag to be affected by the addition operation is the Parity
flag. With only one 1-bit in AL, the parity is odd, and the Parity
flag is clear (PO).

3'44 UNIT THREE

Step 6 subtracts one from the AL register. During the subtraction
process, bit 4 borrows from bit 5 (auxiliary carry). This causes
the Auxiliary Carry flag to be set (AC). The Overflow flag is set
(OV) for the same reason. A borrow from the MSB is same as
carry into the MSB. Because there was no borrow into the MSB,
the exclusive OR operation causes the Overflow flag to be set
(OV).

Step 7 yields the same results as step 5: the Overflow flag is
set (OV), the Sign flag is set (NG), the Auxiliary Carry flag is
set (AC), and the remaining flags are clear (NZ, PO, and NC).

Step 8 adds 7FH to the AL register, to fill the register with ones.
The MSB is still one, so the Sign flag remains set (NG). The Parity
flag is set (PE) because there are an even number of ones. No
other flags are set by the operation.

Step 9 uses the compare operation to determine if the AL register
contains all ones. Recall that the Compare instruction subtracts
the immediate data in the instruction from the contents of the
specified register, and uses the result of the operation to set the
flags. However, the result of the operation is not returned to the
register, as in a normal subtraction operation. The result of this
compare sets the Zero flag (ZR) and the Parity flag (PE). The Zero
flag was set because the result was zero. Remember, the Parity
flag was also set (PE) because the result was zero. Remember,
the Parity flag can only indicate an even or odd number of ones.
Since there were no ones in the result, the count can’t be odd.
Therefore, the count must be even, and the PF is set.

Step 10 makes the same compare, only this time, the immediate
data is zero. The result is OFFH, so the Sign and Parity flags
are set (NG and PE). Had there been any carries generated by
the compare, either the Overflow, Auxiliary Carry, or Carry flags
would have been set (OV, AC, or CY). Generally, when you make
a compare, you are looking for a match between data. Therefore,
the only flag of interest is the Zero flag.

Step 11 adds one to the AL register, causing it to overflow into
the Carry flag. Thus, the Carry flag is set (CY). However, in this
operation, the Overflow flag is clear (NV). This is because there
was a carry into as well as out of the MSB. The exclusive OR
result of these two carries is zero, hence the zero in the Overflow
flag. Since the AL register now contains zeros, the Zero and Parity
flags are set (ZR and PE), and the Sign flag is clear (PL). Finally,
the add operation caused an auxiliary carry, setting the Auxiliary
Carry flag (AC).

Program Transfer Instructions 3'45

Step 12 subtracts one from a register containing zero. This causes
a borrow into the MSB. Recall that a borrow is treated like a
carry, so the Carry flag is set (CY). Since there was also a borrow
out of the MSB, the Overflow flag is clear (NV). Finally, there
was a borrow from bit 5, so the Auxiliary carry flag is set (AC).
With the register now full of ones, the Sign and Parity flags are
set (NG and PE).

Step 13 changes the focus of the program from the AL register
to the AX register. Now when there is a carry from the eighth
bit to the ninth bit of the register, the Carry flag is not set. This
is because the Carry flag only looks at the MSB of the register.
Since AX is 16 bits long, the Carry flag is only affected by a
carry out of the sixteenth bit. The Auxiliary carry flag is set (AC)
because of the carry from bit 4 to bit 5 in the low byte of the
register. Notice that the Parity flag is also set (PE). You might
think that it would be clear, to indicate odd parity. Remember,
however, that the Parity flag only checks the low byte of a 16-bit
register. With no ones in the low byte, the Parity flag is set (PE).

Step 14 fills the AX register with ones. With no carries, the only
flags set are Sign and Parity (NG and PE).

Step 15 is identical to step 11, only now the AX register has
overflowed. This sets the Zero, Auxiliary Carry, Parity, and Carry
flags (ZR, AC, PE, and CY), and clears the Sign flag (PL).

Step 16 compares the AX register with zero, and gets a match;
the Zero flag is set (ZR). Because the result is zero, the Parity
flag is also set (PE).

Step 17 repeats the compare, only this time for OFFFFH. Subtract
OFFFFH from 0000H and you get 0001H, with a borrow. The bor-
row sets the Carry flag (CY), and the one in the result clears the
Parity and Zero flags (PO and NZ). Because there was an auxiliary
borrow in the operation, the Auxiliary Carry flag is set (AC). Fi-
nally, the contents of the register remain zero, because the result
is not stored in the register for a compare operation.

Step 18 is identical to step 12, only now the AX register is in-
volved. The register is filled with ones, setting the Sign and Parity
flags (NG and PE). The borrow, caused by the subtraction, sets
the Auxiliary Carry and Carry flags (AC and CY). The Overflow
flag is not set (NV) because there was a borrow into and out of
the MSB.

3'46 _ UNIT THREE

Step 19 subtracts 7FFFH from the AX register. This clears the
lower 15 bits of the register, and sets the MSB. Since there were
no carries, only the Sign and Parity flags are set (NG and PE).
Again, the Parity flag is set because the low-byte of the AX register
has even parity.

Step 20 subtracts one more from the AX register, and as a result,
reverses all of the bits in the register. A borrow out of the MSB
sets the Overflow flag (OV). An auxiliary carry during the opera-
tion sets the Auxiliary Carry flag (AC). Because there was no carry
into the MSB, the Carry flag is clear (NC). Even parity in the
low byte sets the Parity flag (PE).

Step 21 adds one to the AX register and again reverses all of
the bits in the register. A carry into the MSB sets the Overflow
and Sign flags (OV and NG). An auxiliary carry sets the Auxiliary
Carry flag (AC). Finally, even parity in the low byte sets the Parity
flag (PE).

Step 22 fills the AX register with ones in preparation for the
next step. The Sign and Parity flags are set (NG and PE). The
Overflow and Auxiliary Carry flags are cleared (NV and NA).

Step 23 increments the contents of the AX register. This is equiva-
lent to adding one to the register, as we did in step 15. However,
in this case, the Carry flag is not affected; it remains in the state
determined by the previous step. The INC instruction affects all
of the flags except the Carry flag. Thus, in this step, only the
Zero, Auxiliary Carry, and Parity flags are set (ZR, AC, and PE).
The Overflow and Sign flags are clear (NV and PL).

Step 24 decrements the contents of the AX register. This is equiva-
lent to subtracting one from the register. Like the increment in-
struction, the decrement instruction will have no effect on the
status of the Carry flag. Of the flags it does affect, the Sign, Auxil-
iary Carry, and Parity flags are set (NG, AC, and PE).

Step 25 is the first of the three Carry flag control instructions.
These instructions have no operand, since they operate directly
on the Flag register. The set carry flag (STC) instruction sets the
Carry flag (CY). It has no effect on any other flag or register in
the MPU.

Step 26 clears the Carry flag (NC), with the clear carry flag (CLC)
instruction.

Program Transfer Instructions 3"47

Step 27 sets the Carry flag (CY), with the complement carry flag
(CMC) instruction. Whatever the status of the Carry flag before

this instruction is executed,

Discussion

the status will be reversed.

After stepping through this program, you should be very familiar with
the way each flag will respond to an arithmetic or flag control instruc-
tion. If you are still a little fuzzy on a particular operation, go back
and write a short program that tests that operation. When you feel confi-
dent, proceed with the experiment.

Procedure Continued

6. Now that you understand the arithmetic condition code flag re-
sponses, let’s apply what you learned. The next program you will
load is our multiply-through-repeated-addition program using a
conditional jump instruction. Call up the editor and enter the
program listed in Figure 3-23. Type “EDLIN PROG2.ASM” and

RETURN.

TITLE EXPERIMENT 3 -- PROGRAM 2 -- CONDITIONAL LOOP MULTIPLICATION

COM_PROG SEGMENT

;Beginning of program segment

ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG

3
MULTIPLICAND EQU 7

MULTIPLIER EQU S
;

ORG 100H
START: SUB AL,AL

MOV CL,MULTIPLIER
MOV BL,MULTIPLICAND

TIMES: ADD AL,BL
DEC L
N TIMES
MOV PRODUCT,AL
;
PRODUCT DB 0
COM_PROG ENDS
END START

;COM programs always start here
jClear the PRODUCT register

3Set multiplier as operation counter
;Get the multiplicand, then perform
sthe multiplication operation by
jadding the multiplicand to itself

3 "count” times

;Decrement the "count” after the add
sand repeat if “count" not zero
tStore the product if "count" zero

jReserve one byte in memory

jand initialize the byte to @

3End of program segment

3End of program, point to beginning

Figure 3-23

Multiplication using repeated addition and a conditional
jump to form a program loop.

3'48 UNIT THREE

10.

After you exit the editor, assemble, link, and convert PROG2.ASM
into PROG2.COM. Use the following commands to initiate each
program:

MASM PROG2,PROG2,PROG2,PROG2;
LINK PROGZ2;
EXE2BIN PROG2.EXE PROG2.COM

Figure 3-24 is the assembled program listing. Most of the data
presented in the listing was described earlier. One area not
covered earlier is the conditional jump instruction. Because the
jump is relative, a target address is not specified in the instruc-
tion. Rather, the relative offset to the target is calculated by the
assembler. Line 17 contains the jump instruction. The first byte,
75H, is the JNZ opcode. The second byte, 0OFAH, is the 2’s comple-
ment offset to the target of the jump. A 2’s complement value
is given because the jump is backward.

Assuming the jump is executed, OFAH is added to the current
value of the IP register, 010CH, to produce the new IP register
value 0106H, the address of the target. (Adding OFAH is equiva-
lent to subtracting 6H.) Thus, the next instruction to be executed
is located at address 0106H. To see how the process works, let’s
use the debugger to single-step through the program.

Load the program into memory with the debugger. Type “DEBUG
PROG2.COM” and RETURN. Then, display the MPU register con-
tents. Type “R” and RETURN. Notice that the Flag register bits
are all clear, or reset to a zero logic level.

Using the debugger Trace command, single-step through the first
four instructions.

The first instruction clears the AL register. Because it is an arith-
metic instruction it affects the condition of the Flag register. In
this case, the zero and parity flags are set.

The next two instructions load the multiplier and the multi-
plicand, but they have no effect on the Flag register, since they
are not arithmetic instructions.

The fourth instruction added the multiplicand to the AL register.
This operation clears the zero and parity flags.

Program Transfer Instructions 3'49

The Microsoft MACRO Assembler

WM

00~ 0w +

i1
12
13
14
15
16
17
18

19
20

21

23

01-20-84 PAGE 1-1

TITLE EXPERIMENT 3 -~ PROGRAM 2 -- COND

ITIONAL LOOP MULTIPLICATION

COM_PROG SEGMENT

;Beginn

;COM pr
jClear

;Set mu
;Get th
jthe my
;adding
;“count
;Decrem
sand re

;Store

;Resery
sand in

sEnd of

0000
ing of program segment
ASSUME CS:COM_PROG, DS:COM_PROG
1+S5: COM_PROG
]
= 0007 MULTIPLICAND EQU 7
= 9005 MULTIPLIER EQU 5
L]
0100 ORG 100H
ograms always start here
@100 24 Co START: SUB AL, AL
the PRODUCT register
0102 Bl @5 MOV CL,MALTIPLIER
Itiplier as operation counter
@104 B3 @7 MOV BL,MULTIPLICAND
e multiplicand, then perform
0106 02 C3 TIMES: ADD AL, BL
Ttiplication operation by
the wultiplicand to itself
' times
0le8 FE C9 DEC cL
ent the "count” after the add
010A 75 FA JNZ TIMES
peat if "count" not zero
019C A2 010F R MOV PRODUCT, AL
the product if "count™ zero
)
010F 00 PRODUCT DB]
e one byte in memory
itialize the byte to @
0110 COM_PROG ENDS
program segment
END START

program, point to beginning

Figure 3-24

Assembled listing of multiplication program.

sEnd of

3'50 UNIT THREE

11.

12,

13.

14,

15,

16.

Single-step through the decrement instruction. The “count” is
reduced to four, causing the zero flag to remain clear. This would
suggest that the next instruction will force the program to branch
back to the jump target. Notice that the debugger has decoded
the target address and placed the offset value in the instruction
operand. This is simply a programming aid to show where the
program will branch.

Single-step through the JNZ instruction. The IP register now
points to the jump target at address 0106H. Thus, the next instruc-
tion to be executed is the ADD instruction.

Continue to single-step through the program until the CL register
is decremented to zero. At this point, the AL register contains
the final product of the multiplication process, 23H (35). The
zero flag is clear, indicating the last decrement zeroed the CL
register.

Single-step through the jump instruction. With the zero flag clear,
the jump if zero instruction is ignored, and the program falls
through to the next instruction — the IP register contains the
offset 010CH. Notice that the next instruction will save the con-
tents of the AL register at offset 010FH. This is the address of
the defined byte PRODUCT.

To verify the save operation, examine offset address 010FH. Type
“D” and RETURN. Offset address 010FH contains the value

Now execute the last instruction. Type “T” and RETURN.
Examine memory again. Type “D100” and RETURN. Offset ad-
dress 010FH contains thevalue ________. Is it the correct prod-
uct?

Discussion

Our multiplication program is a good example of using a conditional
jump instruction. It also provides a convenient method for multiplying
one number times another. But, the program is limited. It can only
accommodate values that fit within an 8-bit register and answers that
fit within an 8-bit register. Capacity is easily increased by using 16-bit
registers. Now you can multiply numbers as large as 65,535. However,
the product still can’t exceed 65,535. The most significant bits of num-
bers exceeding 16 bits will be carried out of the register and lost. What
we need is a routine that will recognize and save any carries during
the multiplication process.

Program Transfer Instructions 3'51

The best way to approach the problem is to analyze the program with
a flowchart, and then modify the chart to accommodate the additional
program steps. Figure 3-25 shows the original program on the left; the
boxed-in steps on the right are the solution to the problem.

START

CLEAR
PRODUCT
REGISTER

y

GET
MULTIPLIER

GET
MULTIPLICAND

L] NEW STEPS

ADD | e — — e ————

MULTIPLICAND |
70 PRODUCT |

l

DECREMENT
MULTIPLIER
ADD 17O
ACCUMULATOR

MULTIPLIER
ZERO ?

|
1
|
|
|
I CARRY
|
|
|
|

STORE
PRODUCT

y
(svop)

Figure 3-25

Flowchart of program to multiply two numbers up to
one word in size.

3"52 UNIT THREE

The original program used a process of repeated addition to determine
the product of two numbers. The multiplicand was added to itself the
number of times specified by the multiplier. Now if you want to check
for a product that is too large for its register, the best time is just after
the multiplicand is added to the register, as we’ve shown in Figure
3-25. Since any carry out of the register is never larger than one bit,
a conditional jump that tests the Carry flag is an ideal method. If the
Carry flag is set, then the program can add one to the “carry ac-
cumulator,” a register reserved by you to hold the carry count. If the
Carry flag isn’t set, the program can continue with the multiplication
process without adding one to the carry accumulator. The solution
should be easy to implement.

Procedure Continued

17. If you think you understand the problem and the solution, rewrite
PROG2.ASM to accommodate large, 16-bit numbers. Two 16-bit
registers are large enough to hold the product. Try not to look
at Figure 3-26 as you rewrite the program. Test the program by
multiplying 65535 (OFFFFH) times 3. Use the debugger to single-
step through the instructions after you convert your ASM file
into a COM file. Keep track of the Flag register, the multiplier
register, the multiplicand register, and the two product registers
as you step though the program.

18. At the end of the program, record the following data:

CARRYREGISTER= _________H
PRODUCTREGISTER = ________H

Program Transfer Instructions 3'53

TITLE EXPERIMENT 3 -- PROGRAM 3 -- LARGE NUMBER MULTIPLICATION

]
COM_PROG SEGMENT sBeginning of program segment
ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG

5
MULTIPLICAND EQU OFFFFH

MULTIPLIER EQU 3
)
ORG 190H ;COM programs always start here
START: SUB AX, AX ;Clear the PRODUCT register
SUB DX, DX 3Clear the CARRY register

MoV CX,MULTIPLIER ;Set multiplier as operation counter
MoV BX,MULTIPLICAND ;Get the multiplicand, then perform
TIMES: ADD AX,BX sthe multipiication operation by
jadding the multiplicand to itself
1"count” times

JINC CONTINUE 3Is product more than 455337
INC DX ;Yes, add 1 to CARRY register
CONTINUE;:
DEC cx sDecrement the “"count® after the add
JNZ TIMES jand repeat if “count” not zero
MoV PRODUCT, AX ;Store the product if "count" zero
MOV PRODUCT+2, DX ;Store the carry
INT 3 jHalt the program and
sreturn to the debugger
]
PRODUCT DW Q,0 jReserve two words in memory
jand initialize the words to @
COM_PROG ENDS ;End of program segment
END START 3End of program, point to beginning
Figure 3-26

Program to multiply two word-sized numbers.

Discussion

Figure 3-26 should be pretty close to the program you wrote. We
changed all of the 8-bit registers to 16-bit registers, and the defined
memory to a word-sized location. Then, we added a second memory
location to store the “carry” register contents. Three new instructions
allowed us to check the Carry flag, increment the carry register if there
was a carry, and store the contents of the carry register. If there was
no carry, as in the first add operation, the JNC instruction routed the
program around the increment instruction.

There is one more instruction at the end of the program that is new
to you. It is called a program interrupt. We won’t be covering program
interrupts until later in the course, but this one is very useful for pro-
gram debugging, so we will discuss it briefly here.

3'54 UNIT THREE

An interrupt is a command to the MPU to stop executing the current
program and begin executing a special routine. In the case of INT 3,
the MPU is instructed to stop executing the current program, while
in the debugger, and return to the debugger command prompt. This
can be very handy if you wish to test a few lines of code, and it isn’t
practical to single-step through the program.

For example, a good test for the validity of your multiplication program
is to reverse the multiplier and the multiplicand. Naturally, you
wouldn't try to single-step through the program 65,535 times. You can,
however, place the INT 3 instruction in the program where you wish
to stop execution and return to the debugger. In Figure 3-26, we placed
the interrupt after the product and carry are stored in memory. Why
don’t you give it a try.

Procedure Continued

19. Call up the editor and reverse the multiplier and multiplicand
in your program. Then add the INT 3 instruction to the program.
Convert the ASM file to a COM file and load the program into
memory with the debugger. Now run the program. Type “G = 100"
and RETURN. After a slight pause, the program has completed
execution, and the register contents are displayed. To give you
an idea how fast the MPU executes program code, keep in mind
that between the time you hit the RETURN key and the registers
were displayed, the program completed 65,535 multiplication
loops.

The command “G=100" translates to “Go,” or run the program
starting at address offset 100H, the beginning of the program.

Are the product and carry values produced by this program the
same as before? There should be no difference between adding
3 to itself 65,535 times and adding 65,535 to itself 3 times.

20. Your program can multiply one number by another, using num-
bers up to 16 bits in length, with one exception. What do think
that exception is? The answer is a zero in the multiplier. A zero
in the multiplicand will return an answer of zero, but a zero
in the multiplier will return an answer 65,536 times the value
in the multiplicand. The reason lies in how the multiplier is han-
dled by the program. After the multiplicand is added to the AX

Program Transfer Instructions 3"55

21.

(product) register, the multiplier register (CX) is decremented and
tested for zero. If the multiplier was originally zero, decrementing
the register will change the contents to OFFFFH. That means the
program must go through 65,535 more loops before the register
is again zero.

Since you want the program to handle every number including
zero, you must modify the program one more time. So let’s see
what you've learned. Refer back to the flowchart in Figure 3-25
and determine where the program can be modified. Then, modify
your program, and call it PROG4.ASM. Save the ASM file, but
don’t convert it to a COM file yet. We want to show you how
a BAT (batch) file can be used to generate the COM file.

Call up the editor and create the file ASM.BAT. Following are
the three lines of code that make up the file.

MASM %1,%1,%1,%1;
LINK %1;
EXE2BIN %1.EXE %1.COM

Now to convert your ASM file to a COM file, type “ASM PROG4”
and RETURN. The BAT file will process all of the necessary com-
mands to generate the four MASM files, the EXE file, and the
COM file. As these files are being processed, the normal program
statements are displayed. At the end, two monitor prompts will
be displayed, rather than the standard single prompt, with the
flashing cursor after the second prompt.

Save the BAT file and use it whenever you need to convert an
ASM file to a COM file. Just remember when you execute a BAT
file, never give the file extensions (BAT or ASM), just type the
BAT file name, and then, type the name of the ASM file to be
processed.

3-56 | uniT THREE

22. Figure 3-27 shows our modified program. Two instructions have
been added. The first compares the contents of the CX register
with zero. The second is a conditional jump. If CX equals zero,
the jump is taken, and the program branches to the target labeled
STOP. A value other than zero causes the jump to be ignored.

TITLE EXPERIMENT 3 -- PROGRAM 4 -- LARGE NUMBER MULTIPLICATION

3
COM_PROG SEGMENT ;Beginning of program segment
ASSUME CS:COM_PROG,DS:COM_PROG, $S:COM_PROG

i
MULTIPLICAND EQU @FFFFH

MULTIPLIER EQU 3
1
ORG 100H ;COM programs always start here
START: SUB AX, AX iClear the PRODUCT register
SUB DX, DX sClear the CARRY register
MOV CX,MULTIPLIER 3;Set multiplier as operation counter
CHP CX,0 iIs multiplier zero?
Jz STOP ;Yes, don’t try to multiply
MOV BX,MULTIPLICAND j;Get the multiplicand, then perform
TIMES: ADD AX, BX jthe multiplication operation by
;adding the multiplicand to itself
j"count” times
JNC CONTINUE ;I8 product more than 635357
INC DX 1Yes, add 1 to CARRY register
CONTINUE:
DEC CX ;Decrement the "count” after the add
JNZ TIMES jand repeat if “count® not zero
STOP: MOV PRODUCT , AX 1Store the product if "count” zero
MOV PRODUCT+2, DX ;Store the carry
INT 3 ;Halt the program and
jreturn to the debugger
]
PRODUCT DM 0,0 sReserve two words in memory
sand initialize the words to @
COM_PROG ENDS ;End of program segment
END START ;End of program, point to beginning
Figure 3-27

Program to multiply two numbers and check
for a zero multiplier.

Discussion

Conditional jump instructions give you an opportunity to test for a
specific condition, and depending on the condition, either jump to a
different program area or proceed with the next instruction. Uncondi-
tional jump instructions are used to force a change in program execu-
tion regardless of the condition of the Flag register. For example, at
the end of a program, rather than stop execution with an INT 3 instruc-
tion, you could use an unconditional jump instruction to shift program
execution to a ROM Monitor routine. Since that is a little too complex
for now, let’s try a simple counting routine.

Program Transfer Instructions 3'57

Procedure Continued

23.

24.

Call up the editor and enter the program in Figure 3-28. Use the
ASM.BAT program to convert the ASM file to a COM file. Then,
load the program into memory with the debugger.

TITLE EXPERIMENT 3 -- PROGRAM 5 =-— UNCONDITONAL COUNTING LOOP

H

COM_PROG SEGMENT ;Beginning of program segment
ASSUME CS:COM_PROG, DS: CON_PROG, SS: COM_PROG

i

COUNT_VALUE EQU OFFH ;Count defined

ORG 100H 3COM programs always start here
START: SUB AL, AL jClear the COUNT register
COUNT: INC AL sCount one

MoV SUM, AL ;Store count

cwe AL,COUNT_VALUE ;Count long enough?

JZ STOP jYes, halt the program

JMP COUNT sNo, count one more time
STOP: INT 3 sHalt the program and

jreturn to the debugger

1
SuM DB] iMemory reserved for count
COM_PROG ENDS ;End of program segment

END START jEnd of program, point to beginning

Figure 3-28

Counting program to demonstrate the unconditional jump.

The program is designed to count up from zero, using the uncon-
ditional jump instruction to complete the loop. To add a little
more substance to the program, it also stores each new count
in memory. Finally, because a program loop of this nature will
never end, unless you reset the MPU, the program has a condi-
tional jump to escape the loop after the count reaches a predeter-
mined value.

Single-step through the program loop a few times. First type “R”
and RETURN, then use the “T” command for each single-step
operation. Notice that each time through the loop, one is added
to the AL register, the register contents are stored in memory,
the register contents are compared to an immediate value, the
Zero flag is tested, and the loop is completed with an uncondi-
tional jump. If you are patient, you can single-step through the
loop 255 times, or you can save time, and use the “Go” command
to run the program. In this case, you don’t type “G=100", you
just type “G” and RETURN. The program will run from the point
where you stopped single-stepping. When the program finally
stops, the AL register and the memory storage area will contain
the value OFFH.

3'58 UNIT THREE

Discussion

The assembler treated the unconditional jump instruction in your pro-
gram as a short jump. That is, it calculated the relative distance to
the target as an 8-bit value rather than a 16-bit value. It did this because
it knew the location of the target, and the target was within the 256-byte
jump range. The assembler knew the location of the target because the
target label preceded the jump instruction. If the target follows the jump
instruction, the assembler will assume a normal jump (16-bit target
address).

The reason for this curious situation relates to the way the assembler
translates the source code into object code. MACRO-86 is a two-pass
assembler. This means that the source file is read twice by the assem-
bler. During the first pass, the assembler evaluates the statements and
determines the amount of code it will generate. From that information,
it builds a symbol table where all symbols, variables, and labels are
assigned values. During the second pass, the assembler fills in the sym-
bols, variables, and labels from the symbol table.

Therefore, on the first pass, if the target precedes the jump, the assem-
bler can determine if it must reserve code space for an 8-bit address
or a 16-bit address. However, if the target follows the jump, a “forward
jump,” the assembler doesn’t know how much space it must reserve
for the target address. In this case, it automatically reserves two bytes
of code for the target address. On the second pass, the assembler fills
in the target address value. If the forward jump is “short,” the address
value is one byte long. Since the assembler reserved two bytes for the
address value, it is left with an empty byte. Empty bytes aren’t legal,
so the assembler fills the byte with the code, 90H, for a NOP (no opera-
tion) instruction. Recall that a NOP instruction does nothing. It simply
takes up space in the program and uses three clock cycles of MPU
execution time.

Now that you have had a chance to see how jump instructions can
be used to redirect program flow, let’s look at a more refined form
of program branch, the loop instruction.

Program Transfer Instructions 3'59

Procedure Continued

25. The program in Figure 3-27 used a couple of jump instructions
to perform a multiplication operation. Figure 3-29 is the same
basic program, only here, loop related instructions are used. Call
up the editor and enter the program in Figure 3-29. Use the
ASM.BAT program to convert the ASM file to a COM file. Then,
load the program into memory with the debugger.

TITLE EXPERIMENT 3 -- PROGRAM & —— LARGE NUMBER MULTIPLICATION LOOP

i
COM_PROG SEGMENT

;Beginning of program segment

ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG

3
MULTIFLICAND EQU

OFFFFH
MULTIPLIER W 3
1
ORG 100H
START: SUB AX,AX
SUB DX,DX
MOV CX,MULTIPLIER
JCXZ STOP

MOV BX,MULTIPLICAND

TIMES: ADD AX,BX

JNC CONT INUE

;COM programs always start here
sClear the PRODUCT register

sClear the CARRY register

;Set multiplier as operation counter
31s multiplier zero?

sIf so, don’t try to multiply

;Get the multiplicand, then perform
sthe multiplication operation by
sadding the multiplicand to itself
;"count” times

1Is product more than 655357

INC DX ;Yes, add 1 to CARRY register
CONT INUE:
LOOP TIMES sDecrement the "count" after the add
sand repeat if “count™ not zero
STOP: MOV PRODUCT, AX ;Store the product if "count™ zero
MoV PRODUCT+2, DX 1Store the carry
INT 3 ;Halt the program and
sreturn to the debugger
»
FRODUCT DM 0,0 sReserve two words in memory
sand initialize the words to @
CoM_PROG ENDS ;End of program segment
END START sEnd of program, point to beginning
Figure 3-29
Multiplication program modified with
a LOOP instruction.

26. Single-step through the program and observe the registers. The
end result should be no different from the earlier program; it’s
just accomplished in a slightly different fashion.

3-60

UNIT THREE

Discussion

The program is changed in two areas. First, the check for a zero multi-
plier is now handled by the jump if CX zero instruction, instead of
the compare and jump if zero instructions. The change is insignificant
in this program. It simply reduces the number of instructions by one.
Where it could be important is in a program loop. Here, a savings of
one instruction could make a big difference in program execution time.
The second area of program change is a good example.

The decrement and jump if not zero instructions are replaced by the
LOOP instruction. Since the LOOP instruction is part of the program
loop, the savings of one instruction reduces the execution time of the
program; The bigger the multiplier, the greater the savings.

That was an example of an unconditional loop instruction. Now let’s
look at an example of a conditional loop instruction.

Procedure Continued

27. Call up the editor and enter the program in Figure 3-30. Use the
ASM.BAT program to convert the ASM file to a COM file. Then
load the program into memory with the debugger.

TITLE EXPERIMENT 3 -- PROGRAM 7 -- COUNTING ROUTINE

]
COM_FROG SEGMENT ;Beginning of program segmwent
ASSUME CS:COM_PROG, DS: COM_PROG, SS: COM_PROG
i
MAX_COUNT EQU 1@ jMaximum number of counts
BREAK EQU 3 ;Stop count number
i
ORG 100H sCOM programs always start here
START: SUB AX, AX 1Zero the register
MOV CX,MAX_COUNT ;Get the maximum count value
MOV BX, BREAK sGet the stop count value
COUNT: INC AX ;Add one to count register
DEC BX sDecrement the break value
LOOPNZ COUNT sLoop if BX or CX not zero
INT 3 jHalt the program and
jreturn to the debugger
i
COM_PROG ENDS $End of program segment
END START ;End of program, point to beginning
Figure 3-30

Program to show the operation of the
conditional loop instruction.

Program Transfer Instructions 3‘61

28. Single-step through the program. The loop count register (CX)
is loaded with the value 10, yet the program stopped counting
after 3. Why?

Discussion

The conditional loop instruction makes two tests prior to each loop.
If either test fails, the loop is ignored. In the case of the LOOPNZ in-
struction in this program, the zero flag and the CX register contents
are tested. If the zero flag is clear, the last arithmetic operation produced
a non-zero, and if the CX register is not zero, the loop is taken. Since
the BX register was zeroed during the third loop, the program never
executed a fourth loop, leaving the count in the AX register at 3. Had
the MAX_COUNT and BREAK values been reversed, the result would
have been the same.

This completes the Experiment for Unit 3. Proceed to the Unit 3 Exami-
nation.

3“62 _ UNIT THREE

UNIT 3 EXAMINATION

1. What are the six flags discussed in this Unit?

AEDOwe

2. What are the contents of the six condition flags after the following
instructions are executed?

MOV AL,0BH
SUB AL,0FH

AmoOwe

3. List the flags that affect the following conditional jumps, and
state the condition of each flag or group of flags.

JZ
JNC
JPE
JO
JNS
JNE
JNL
JNBE
JE
JA

Program Transfer Instructions 3'63

4. The last mathematical operation set the flags in this manner:
OF =1, SF=1,ZF =0, AF =1, PF=1, CF=1. Based on this, which
of the following conditional jumps would be taken? Answer YES
or NO for each jump.

JNG
JNO
JLE
JNGE
JBE
JL
JNLE
JBE
JS

5. Identify the flowchart symbols in Figure 3-31.

L G

O —* |

Figure 3-31
Figure for question 5.

3'64 UNIT THREE

6. List the five decision-making mathematical symbols most com-
monly used in flowcharts.

moOwe

7. The loop count for a LOOP instruction is contained in the
register.

8. The status of the CX register is the only test performed by the

LOOPE instruction prior to executing the loop.
True/False

Program Transfer Instructions 3'65

EXAMINATION ANSWERS

1. Thesix flags discussed in this Unit are:

Overflow flag or OF.

Sign flag or SF.

Zero flag or ZF.

Auxiliary carry flag or AF.
Parity flag or PF.

Carry flag or CF.

AEOOEE

2. The contents of the six condition flags are

OF=0
SF=1
ZF=0
AF=1
PF=1
CF=1

MEY 0w

after the instructions

MOV AL,0BH
SUB AL,OFH

are executed.

3. Following are the flags and their condition that control the execu-
tion of the conditional jump instructions:

JZ ZF=1.

JNC CF=o0.

JPE PF=1.

JO OF=1.

JNS SF=0.

JNE ZF=0.

JNL (SF XOR OF)=0.
JNBE (CF OR ZF)=0.
JE ZF=1.

JA (CFORZF)=0.

3‘66 UNIT THREE

4. The last mathematical operation set the flags in this manner:
OF=1, SF=1, ZF=0, AF=1, PF=1, CF=1. Based on this, the
jumps that would be taken are indicated below.

JNG NO.
JNO NO.
JLE NO.
JNGE NO.
JBE YES.
JL NO.
JNLE YES.
JBE YES.
JS YES.

5. The flowchart symbols shown in Figure 3-31 are the:

A. Operations box.
B. Decision box.
C. Terminal box.
D. Connector.

E. Flowlines.

6. The five decision-making mathematical symbols most commonly
used in flowcharts are:

=, is equal to.

>, is greater than.

<, is less than.

>, is greater than or equal to.
<, is less than or equal to.

Moo

7. The loop count for a LOOP instruction is contained in the Count,
or CX register.

8. False. The status of the CX register is only one of two tests per-
formed by the LOOPE instruction prior to executing the loop.
The other test is whether the zero flag is set.

Program Transfer Instructions 3'67

10.

11.

12.

SELF-REVIEW ANSWERS

The five most common flowcharting symbols are the:

A. Terminal Symbol
B. Operation Box

C. Decision Box

D. Flow Lines

E. Connectors

True. You are permitted to use mathematical symbols in a flow-
chart.

True. The flowchart should always begin with a start terminal
symbol.

The unconditional branch in a flowchart corresponds to the un-
conditional jump in the actual program.

The conditional branch in a flowchart corresponds to the condi-
tional jump in the actual program.

Virtually every program uses a technique called a loop.

The loop allows a section of the program to be repeated as often
as needed to perform an operation.

The jump instruction allows the microprocessor to escape the
straight line program sequence.

Each time you use a jump instruction, you must specify the in-
struction’s target.

The target is the place, or memory location, in the program to
which you wish the program to jump.

When the address of the target is calculated using a relative value,
the instruction is said to be a direct jump.

In an indirect jump, the address of the target is contained in
a register. This address replaces the contents of the IP register
when the instruction is executed.

3'68 UNIT THREE

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

The ability to make a decision is the real power of the microproc-
essor.

The 8088 MPU bases its decisions on the contents of the Flag
register.

False. The CMP instruction does not subtract the source operand
from the destination operand and store the result in the AX regis-
ter. Neither operand is affected by the compare operation. Only
the Flag register is affected.

The unconditional jump instruction removes the MPU from the
decision making process.

The JNZ instruction will cause the program to jump to the target
if the zero flag is clear.

The JA instruction should not be used with signed arithmetic
operations. It doesn’t test the sign flag.

An arithmetic operation will affect the condition of the Flag regis-
ter.

The zero flag is tested when a LOOPE instruction is executed.

False. The LOOP instruction is considered an unconditional in-
struction.

The the first step performed when the LOOP instruction is exe-
cuted is decrement the CX register and test for zero.

The JCXZ instruction is used to test the CX register for zero.

True. The LOOPE instruction is considered a conditional instruc-
tion.

False. The Zero flag must be set before the LOOPE instruction
will execute a program loop.

The LOOPNZ instruction has the same opcode as the LOOPNE
instruction.

The maximum distance a program can loop backward with the
LOOP instruction is — 128 bytes.

Unit 4

SUBROUTINES

4“2 UNIT FOUR

CONTENTS
TBOAUBHOR o4 v e saues U FOWEn CVERY LR LFESEEE s e 4-3
Unit 'ODJectives ; vai iason sadas snnes Sawei vl e Coaes vuspe 4-4
i AT IO oo o conmmn samom uamessien ewaion s s s 4-5
Subronting: CalE ..o coveu spvin vewes ci gy o3 sais pases vesod s 4-6
TherStack ... 280 sosss sndes snies imEelss e BAFE Soned 4-11
The Call and Return Instructions 4-23
Ieluding FUEE . cou o vou 5o copen sovmien sedis eames o e 4-36
Experiment: .. os s’ s iivs s ien omas sesem 5 ped a6 seaein vedies 4-41
Unit 4 Examination, 4-59

EXamination ADSWETS . .o v vt enonreenenesoeeansananseas 4-60

Self-ReVIieW ANSWELSo vviiieetnenuneeennerenesanss 4-61

Subroutines 4'3

INTRODUCTION

By now, you should be a little more comfortable with assembly lan-
guage. You can probably see great programming possibilities with the
various program transfer instructions. But there is one major problem
with branching; you have no easy way to jump from different areas
of the program to a specific area of the program and then back again.

This Unit will resolve that problem. Here, you will learn how to write
and address program sections called subroutines. Then you will learn
how to use two new instructions, call and return, that allow you to
access and return from these subroutines. Next, you will learn how
the MPU uses a “memory stack” to save vital data, such as the sub-
routine return address. Finally, you will learn how to create file lib-
raries of subroutines, and “include” them in a program.

Use the “Unit Objectives” that follow to evaluate your progress. When
you successfully accomplish all of the objectives, you will have com-
pleted this Unit. You can use the “Unit Activity Guide” to keep a record
of the sections that you complete.

‘[

44 | wreoun

UNIT OBJECTIVES

When you have completed this unit, you will be able to:

- 1.

2.

Define stack, subroutine, and Stack Pointer.

Explain the operations performed by each of the following in-
structions: PUSH, PUSHF, POP, POPF, CALL, and RET.

Write simple programs that use subroutines.
Explain the use of the Stack Pointer register.
Write simple programs that use the memory stack.
Define the LABEL and INCLUDE directives.
Define the operator OFFSET.

Write a library file subroutine, and include that file in another
program.

Subroutines 4'5

UNIT ACTIVITY GUIDE

Read the Section on “Subroutine Calls.”

Complete Self-Review Questions 1-8.

Read the Section on “The Stack.”

Complete Self-Review Questions 7-20.

Read the Section on “The Call and Return Instruc-
tions.”

Complete Self-Review Questions 21-26.

Read the Section on “Including Files.”

Complete Self-Review Questions 27-30.

Perform the Experiment.

Complete the Unit 4 Examination.

Check the Examination Answers.

4'6 UNIT FOUR

SUBROUTINE CALLS

A Subroutine is a step-by-step procedure for doing a particular job.
As the name implies, it is a subsection or part of a larger routine or
program. By convention, a subroutine is a series of instructions used
to perform a task that may occur many times throughout a program.
You might think of it as a specialized loop in an otherwise linear pro-
gram. Its real power, however, lies in the fact that it can be used over
and over again from any part of the program. To get an idea how a
subroutine could be used, let’s look at a program that operates in an
endless loop.

The Problem

Suppose you had a microprocessor-controlled sound generator and you
wanted to create the sound of a clock “tick-tock.” The program flow-
chart for such a program would probably look like the one in Figure

4-1.

START

GET TICK
VALUE
BEGIN BEGIN
DELAY DELAY
Loop LOOP

1/2 SECOND 1/2 SECOND
END END

DELAY DELAY

GET TOCK REPEAT
VALUE CYCLE

Figure 4-1
Flowchart for a “tick-tock” program.

Subroutines 4'7

The START symbol, of course, indicates the beginning of the program.
The program commences by loading the “tick value.” This is some
number that, when translated by the generator, would produce the
sound of a “tick.” Next, the program outputs the tick value to the
generator. (The trapezoid-shaped box is a flowchart symbol for input/
output.) Finally, the tick portion of the program ends with a delay
routine that loads a value into the Count (CX) register that will produce
one-half second worth of looping. You will find, when we examine
the program later, that each instruction requires a specific amount of
time to execute. By arranging a unique string of instructions in the
loop, you can make the program delay any amount of time.

After the delay, the “tock” portion of the program is executed. First
the “tock value” is loaded. Then this value is sent to the generator.
Finally, the program delays for one-half second. After the second delay,
the program cycle repeats. Since the program is meant to continuously
cycle, there is no STOP symbol.

Computer memory costs money, and the time it takes to enter a program
costs even more money. Therefore, every time you can save program
space and your time to write the program, it's to your advantage. The
“tick-tock” program is a prime candidate.

4'8 UNIT FOUR

The Subroutine Solution

Notice that the program has a one-half second delay that is repeated
twice each cycle. If you were to make it a separate subroutine, and
then jump to it every time you needed a delay, you could shorten the
program length. Figure 4-2 shows how this is done. The small circles
in the flowchart indicate a change in flow direction, usually to a sub-
routine. Simply match the number or letter in the circle in the main
program to the number or letter of the appropriate subroutine. In this
case there is only one subroutine. The number or letter at the end of
the subroutine directs you back to the appropriate point in the main
program. We've added dotted lines to help you follow the flow of the
program. These are normally left out. Other than the jumps, or as they
are normally labeled, “subroutine calls,” the program executes as de-
scribed earlier.

/"‘-..

GET TICK ~

VALUE // _ _?
/
A

// / BEGIN
/7 DELAY
/ /
/ Y
(D) —— | LOOP
| 1/2 SECOND
N RETURN
\Q TO MAIN
GET TOCK (RO
VALUE |\\
| N,
|
| /
| /
/
L
D-—=—=
/
?‘ _____ /
REPEAT
CYCLE
Figure 4-2

Modified flowchart for a “tick-tock” program.

Subroutines 4'9

Examine the flowchart in Figure 4-2. Can you see where there might
be a problem if you use a JMP instruction? After the program jumps
to the subroutine, how does it know at which point to re-enter the
main program? Before the jump-to-subroutine occurs, the address of
the next instruction in the main program must somehow be saved. And
then after the subroutine is completed, the address must be recalled
and placed in the Instruction Pointer (IP) register of the MPU.

The instruction that lets you save the IP before jumping is CALL (call
subroutine). After the subroutine is completed, the final instruction
is RET (return from subroutine). This instruction “gets” the address
that the CALL instruction saved earlier and returns it to the IP. Now
the MPU can execute the next instruction in the main program.

Before we can examine the mechanics of the CALL and RET instruc-
tions, we must introduce another area of the microcomputer, the stack.
This is where the IP value is stored before a subroutine call.

4-10 | unirFour

Self-Review Questions

1. A subroutine is a step-by-step for doing a par-
ticular job.

2. Asubroutine can only be used once.

True/False
3. Asubroutine is called with the instruction.
4. The last instruction in a subroutine is the instruc-
tion.
5. The Trapezoid-shaped box in a flowchart representsan ____/

process.

6. The small circle in a flowchart represents a
in program direction.

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 4-61.

subroutines | 4-11

THE STACK

In computer jargon, a stack is a group of temporary storage locations
in which data can be stored and later retrieved. In this regard, a stack
is somewhat like memory. In fact, most microprocessors, including the
8088, use a section of memory as a stack.

The stack can occupy up to 64K of memory space (a complete segment)
in an EXE program. In a COM program, on the other hand, the stack
is more limited in size, since COM programs are limited to a single
64K segment of memory. The stack size you choose depends on your
needs, and will vary from program to program. Let’s see what makes
up a stack.

4-12 | unirFour

Structure

The stack occupies an area in memory. This area is located at the end
of the program, following any defined data. Figure 4-3 shows the gen-
eral structure of a typical COM program containing instruction code,
defined data, and a stack. Each boxed-in area represents a byte in mem-

ory.

HIGH MEMORY
o —————
-~
L STACK
DEFINED
7 DATA
¥,
S
\.. INSTRUCTION
CODE
-
/-——-_--—"_——""
LOW MEMORY
Figure 4-3

Relationship of instruction code, defined data,
and the stack in a program.

subroutines | 4-13

The stack area in a program is not treated in the same manner as the
defined data area. The stack area has a specific top and bottom, and
the data is considered not randomly accessible. When data is moved
into the stack, it is stored from the top down, with the high address
location considered the "top of stack.”

The MPU addresses the “top of stack” through the Stack Pointer (SP)
register. That is, the SP register contains the offset address of the top
of the stack. As data is stored in the stack, the SP register is decremented
to point to the next free memory location in the stack, the new “top
of stack.” By the same token, when data is read from the stack, the
SP register is incremented to point to the preceding data location. The
process operates on the LIFO principle, Last data In is First data Out.

In a COM program, the stack area is not specifically identified with
a SEGMENT directive, as would be the case with an EXE program.
However, the Stack Segment register must still be identified in the AS-
SUME directive, so that the assembler knows the stack segment exists,
for addressing purposes. This is no different from what you have been
doing in all of your earlier programs.

The actual assignment of a stack is shown in Figure 4-4. The Figure
illustrates the basic structure of a COM program that contains a stack.
Notice that defining the stack area is only one part of the process of
establishing the stack. Let’s look at the process.

1 TITLE UNITA -- PROGRAM 1 — PROGRAM STRUCTURE
3
2 COM_PROG SEGMENT
3 ASSUME CS:COM_PROG, DS: COM_PROG, 5S: COM_PROG
;
4 ORG 100H
5 START: MOV SP,OFFSET TOP_OF_STACK ;Get STACK address
6 DW 10 DUP (2) 1STACK size defined
7 TOP_OF STACK LABEL WORD jldentify top of STACK
H
8 COM_PROG ENDS
g END START

Figure 4-4
Basic structure of a COM program with a stack.

4-14 | unroun

In line 6, the stack area is defined. A “DUP (?)” expression is normally
used, since you don’t care what is stored in the stack prior to program
execution. The Define Word assembler directive must be used, because
all stack related instructions operate on word-sized values.

The number of bytes reserved for the stack depends on the amount
of data that will be stored during program execution. Keep in mind,
however, the data stored by your program may not be the only data
stored in the stack. Other system programs may share the same stack.
The debugger program, for example, may store up to eight words of
data in the stack while it is being used to debug a program. As a general
rule of thumb, if you anticipate debugging your program, always define
at least eight additional words in your stack to accommodate the debug-
ger.

Once the stack is defined, the “top of stack” must be identified. Line
7 of the program in Figure 4-4 shows the preferred method. The term
“TOP_OF_STACK" is simply a descriptive name assigned to the assem-
bler directive LABEL. This directive tells the assembler to associate
the current address offset with the name. The operator WORD com-
pletes the identification by telling the assembler the name relates to
word-sized values. Thus, line 7 has identified the next word of memory
following the memory area assigned to the stack. This point is consid-
ered the top of stack. Notice that the directive LABEL does not reserve
amemory location; it simply points to it.

The stack area is identified and the top of stack is identified. The last
step is to load the address offset of the top of stack into the Stack
Pointer register. The assembler operator OFFSET handles that opera-
tion. When the operator OFFSET precedes a name in the source operand
of an instruction, the assembler calculates the effective address, or
offset, of that name. That value becomes the source operand. Therefore,
line 5 of the program in Figure 4-4 moves the offset address of the
name TOP_OF_STACK into the SP register. All stack operations use
the contents of the Stack Pointer along with the contents of the Stack
Segment register to calculate the physical address of the top of stack.

Subroutines 4'1 5

Addressing The Stack

Data within the stack can be accessed directly or indirectly. The CALL
and RET instructions use the indirect form. That is, they use the stack
to support a program transfer operation. The PUSH and POP instruc-
tions directly manipulate data within the stack.

PUSH INSTRUCTIONS

The 8088 MPU has two basic push instructions. PUSH lets you store
the contents of a 16-bit register or memory word in the stack. PUSHF
is more specific; it lets you store the contents of the Flag register in
the stack. The following is an example of how each instruction-type
could be written.

PUSH BX .Save the BX register

PUSH COUNT ;Save data at offset
;COUNT and COUNT+1

PUSHF ; Save the Flagregister

The first example is quite straightfoward, the contents of the BX register
are saved in the stack. You could not “PUSH BL” or “PUSH BH,” since
these are only 8-bit registers. The second example requires a little more
planning if you wish to save memory data. “PUSH COUNT"” indicates
that you are saving the data located at the address in memory identified
by the label COUNT. However, because the stack stores words and
not bytes, the data at address COUNT +1 is also saved. Therefore, you
must make sure the data you wish to save has been defined as word-
sized data. The third example has no operand, since the opcode
specifies the register to be saved.

4-16 | unirFour

Figure 4-5 shows the effects of the “PUSH BX” instruction. Before the
instruction is executed, the Stack Pointer contains the address 01F9H.
This is the top of stack address. The BX register contains the data word
OFOODH. Any data in the stack at this time is not important. Figure
4-5A shows the SP and BX register contents, and a portion of memory
prior to execution.

When the PUSH BX instruction is executed, the MPU first decrements
the Stack Pointer register by two. Then the contents of the BX register
are stored, “pushed,” into memory locations 01F7H and 01F8H. The
SP is first decremented by two because the MPU always stores the
low byte of a 2-byte word first. Since the low byte is always stored
in the low memory address, the SP must be pointing at the lower of
the two address locations. This is shown in Figure 4-5B.

MPU | RAM

STACK POINTER |

01F5
01F4

[om 1] | STACK
BX REGISTER |
| Foo0 | |
|
|
() BEFORE EXECUTION
|
STACK POINTER | O1FA
[om | | 01F9
| 01F8
BX REGISTER | OLFT ~—
| FOOD | | 01F6
|

AFTER EXECUTION

Figure 4-5
Executing the PUSH BX instruction.

Subroutines 4'1 7

The 8088 Instruction Set Summary in Appendix D uses an abbreviated
flow diagram to describe the operation of each instruction. The one
for the PUSH instruction is:

1. (SP)«<{(SP)-2
2. ((SP+1):(SP))«(SRC)

This means that there are two steps to the PUSH operation. The first,
reading from right-to-left, says subtract two from the contents of the
Stack Pointer and store the result in the Stack Pointer. The second
step says the contents of the specified register or memory source
operand (SRC) are stored in the stack at the address indicated by the
Stack Pointer value (low byte) and the Stack Pointer value plus one
(high byte). Thus, if you have any question as to how an instruction
is implemented, you can refer to its abbreviated operation flow diagram.

Because the Stack Pointer is always decremented-by-two before any
data is stored, the first memory location at the top of stack is always
considered empty or undefined. Figure 4-5B illustrates this point. After
the PUSH instruction is executed, address 01F9H has no value assigned
to it. The new top of stack address is 01F7H, as indicated by the Stack
Pointer.

4-18 | uniTFour

Now if you were to execute the PUSH instruction a second time, you
would obtain the results shown in Figure 4-6. Part A is the MPU and
RAM status before execution; part B is the MPU and RAM status after
execution. Data in the BX register was changed to make the operation
easier to follow. As before, the Stack Pointer is first decremented by
two. Then the low byte of the BX register is moved to address 01F5H,
followed by the high byte to address 01F6H.

MPU | RAM

STACK POINTER |
| am | |
BX REGISTER ' 01F7 _,_EQ[:(?{
l FADE I | N 01F6
|
|

@ BEFORE EXECUTION
|

STACK POINTER

l

HE 1 |
BX REGISTER |

| FADE | |
I

@ AFTER EXECUTION

Figure 4-6
Executing a second PUSH BX instruction.

Subroutines 4"1 9

POP INSTRUCTIONS

Once you’'ve moved data into the stack, you can remove it with a POP
instruction. As with the PUSH instructions, the 8088 MPU has two
basic POP instructions. POP lets you remove a data word from the
stack and place it in a register or memory location. POPF is the opposite
of PUSHF, in that it moves data from the stack to the Flags register.
This, by the way, is a handy instruction if you want to preset all of
the flags to some unique value. Simply load the value in a register,
PUSH the register value into the stack, and then POPF the value into
the Flags register. Later in the course, you will learn other flag manipu-
lation instructions, but this is the only way you can modify all the
flags at once.

Following is an example of how each instruction-type could be written.

POP BX ;Load BX register from STACK
POP COUNT ;Move STACK word to offset

;address COUNT and COUNT+1
POPF ;Get Flags from STACK

Each of these instructions is just the opposite of the examples we gave
for the various PUSH instructions. In the case of the POP to memory
instruction, the low byte is moved to the address indicated by the label
COUNT, and the high byte is moved to address COUNT +1. Again,
you must make sure the memory location is defined as a word.

4'20 UNIT FOUR

Figure 4-7 shows the “POP BX” operation. Motice that the stack is in
the same condition as we left it in Figure 4-6, except the BX register
has been cleared. When the instruction is executed, the data byte
pointed to by the Stack Pointer is “popped” and stored as the low
byte in the BX register. Then the data pointed to by the Stack Pointer
“plus one” is popped and stored as the high byte in the BX register.
Finally, the Stack Pointer value is incremented by two. As Figure 4-7B
shows, the new top of stack address is 01F7H.

MPU | RAM

STACK POINTER |

S | |
BX REGISTER l

| o000 | |
|

@) seroRe EXECUTION

STACK POINTER

[o | |
I NEW TOP
BX REGISTER OF STACK
| rape] |
|

l
AFTER EXECUTION

Figure 4-7
Executing the POP BX instruction.

Subroutines 4'21

Even though the top of stack has changed, the data stored at the old
top of stack has not changed. It will remain in memory until new data
is pushed into the stack, or the microcomputer is switched off.

One thing to keep in mind when using the PUSH and POP instructions,
is that other than the values stored in the Stack Pointer and the Stack
Segment registers, the MPU doesn’t know where the “stack” is located
in memory. Push too many data words and you may wind up writing
over your program data or code. Conversely, popping more data than
you pushed will move you into an area where the data is unknown.
It may be reserved system control data, random RAM data, or ROM
code, any of which will probably cause a program failure. Always deter-
mine where your “stack” will reside, and then stay within those
boundaries!

The four instructions, PUSH, POP, PUSHF, and POPF are the only in-
structions that let you directly manipulate the stack. However, as we
mentioned earlier, there are two other instructions that use the stack
to save data during their operation. These, you may recall, are CALL
and RET. We will describe their operation in the next section.

4-22 | uniFour

Self-Review Questions

7. The 8088 MPU stack uses the principle of data
storage. LIFO/FIFO

8. For easier data transfer, the stack is always located directly after

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

the program code section.

True/False
The register contains the stack base address.
The register contains the stack offset address.
The __________ instruction is used to move data directly into

the stack.

To remove data from the stack, you would use the
instruction.

The instruction is used to store the contents of
the Flag register in the stack.

The instruction is used to move a 16-bit value
from the stack into the Flag register.

Depending on the instruction, you can save both words and bytes
in the stack.

True/False

The PUSH instruction decrements the SP by two and then stores
the data at addresses SP and SP + 1.

True/False

The POPF instruction increments the SP by two and then re-
trieves the data at addresses SP and SP + 1.

True/False

You can pop more data from the stack than you pushed.

True/False

The assembler directive identifies an offset
address location with a name.

The assembler operator causes the assembler
to calculate the offset address of a name.

Subroutines 4‘23

THE CALL AND RETURN INSTRUCTIONS

A program jump to a subroutine is a permanent operation. That is,
the microprocessor no longer knows where the main program is located.
To get back to the main program, you need another “permanent” jump
instruction. This is fine if you always jump back to the same point
in the program, but what do you do if you want to use the same sub-
routine in two or more different areas of the program? What you need
is a system to remember where you left the main program, so you can
return to the same point.

Recall that the Instruction Pointer (IP) is used to tell the MPU the ad-
dress of the next instruction to be executed. As soon as that instruction
is read into the MPU, the value in the IP is changed to indicate the
address of the next instruction. Therefore, if the [P value of the instruc-
tion after the jump is saved, the MPU will know where to return in
the main program, after the subroutine is completed. You could, with
a little manipulation, save the IP value on the stack and then use that
value to jump back. But there is a better way, the CALL and RET instruc-
tions. This section will describe how each instruction works, and then
present an example program where they are used to access and return
from a subroutine.

4'24 UNIT FOUR

The CALL Instruction

The CALL instruction is similar to the PUSH instruction in the way
it moves data into the stack. But rather than store data, the CALL in-
struction stores the offset address for the next instruction in the main
program. Figure 4-8 illustrates the process involved in executing a
CALL instruction. Part A shows segments of the MPU and RAM prior
to execution. The Instruction Pointer points to the CALL instruction
at address 011AH in the main program. The Stack Pointer points to
the top of stack at address 0214H. At this time you can consider the
stack empty.

The CALL instruction occupies three bytes in memory. Hex code OE8H
is the instruction code. The next two bytes indicate the offset address
of the destination or target operand calculated by the assembler. This
is the starting address of the subroutine being “called.” Since the CALL
instruction occupies three bytes in memory, the fourth byte, at address
011DH, must contain the next instruction in the main program.

Figure 4-8B shows the result of executing the CALL instruction. To
get to this position:

1. The CALL instruction is first read into the MPU.
2. The CALL is decoded.

3. The IP is updated to point to the address of the next se-
quential instruction.

4. The SP is decremented twice and the IP value is pushed
into the stack location pointed to by the SP and SP+1.
Thus, the stack now contains the values 1DH at address
0212H and 01H at address 0213H. This is the return ad-
dress in the main program.

5. The IP value is then replaced with the new offset address
value found in the CALL instruction destination operand.
Thus, the next instruction that will be loaded into the
MPU is the first instruction of the subroutine, 0B2H.

Subroutines 4"25

STACK POINTER
| 0214

INSTRUCTION POINTER
| 011A |

MPU | RAM

(A) BEFORE EXECUTION

STACK POINTER

| iz |

INSTRUCTION POINTER
[01€7 |

AFTER EXECUTION

Executing a CALL to subroutine instruction.

Once the Instruction Pointer has been shifted to the subroutine area
of the program, the MPU begins executing the instruction code. How-
ever, there comes a time when the subroutine is finished and the MPU
must return to the main program. This is accomplished with the RET
(return from subroutine) instruction.

TOP OF
. 0214 =— s1acK
§ 0213
g 0212
= 0211
'g“ 3| 01EA
5 81 019
(=]
& 03 01E8
=
bk B2 01E7
L —
= L NEXT
= s OLID === | NSTRUCTION
== 0 011¢
3 &7
& INSTRUCTION
~ £8 OIIA=—" " pOINTER
- ______,...--"""""-
NEW TOP
=~ OF STACK
= £l 01EA
E 81 019
g 03 O1E8
> INSTRUCTION
L
- P
—~ B0 011D
=
== 01 011¢
£S £ 0118
j E8 011A
- m
~
Figure 4-8

4‘26 UNIT FOUR

The RET Instruction

Essentially, RET pops the data word from the top of the stack and
places it in the Instruction Pointer. The MPU then uses the address
in the IP to fetch the next instruction. Figure 4-9 illustrates the process
involved in executing a RET instruction. Part A shows segments of
the MPU and RAM prior to execution. The Instruction Pointer points
to the RET instruction at address 01FCH in the subroutine. The Stack
Pointer points to the current “top of Stack” at address 0212H. The data
in the stack at this time is the value pushed there by the earlier CALL
instruction.

Figure 4-9B shows the result of executing the RET instruction. To get
to this position:

1. The RET instruction is first loaded into the MPU.

2. The RET instruction is then decoded, causing the data
word at the top of the stack to be popped into the Instruc-
tion Pointer.

3. Finally, the Stack Pointer is incremented by two, to ad-
dress 0214H.

4. The IP now contains the address of the next instruction
to be fetched. This is the instruction immediately follow-
ing the original CALL instruction described in Figure 4-8.

Once the Instruction Pointer has been shifted back to the main program,
the MPU again begins executing code.

In addition to storing the return address for a called subroutine, the
stack is often used as temporary storage for data that is to be passed
to a subroutine. For example, the main program may gather data from
a peripheral and then call a subroutine to process the data. Once the
subroutine has processed the data, it's no longer of any value to the
main program. However, the subroutine, can’t change the Stack Pointer
contents to point to a location in the stack above the useless data. The
reason is quite simple. The current top of stack contains the return
address to the main program. There is, however, a return instruction
that will allow a return to the main program, and then adjust the con-
tents of the Stack Pointer so that it points to a stack location above
the useless data. This is the return and immediate add instruction.

Subroutines 4'27

STACK POINTER

| e |

INSTRUCTION POINTER
| 01FC |

(A) BEFORE EXECUTION

STACK POINTER
| 0214]

INSTRUCTION POINTER

| o |

AFTER EXECUTION

[RAM
—— { 0214
l 5 013
- TOPOF
g -
0211
| b e 4
| ’é“ c3 mc-—'”§},‘*,‘,‘,,“§§°”
= 02 01FB
| % 2 01FA
| 2 £2 01F9
I —_—
| = E6 011F
| =g FC 011E
z 2 80 0110
| = 01 011C
| —
I
NEW TOP
| 0214 ~—(F STack
| g 01 0213
| 5 D) 0212
I et
| ’%‘ c3 01FC
= 02 01F8
| 3
4 23 01FA
| a 7] 01F9
| _
I 'z:-:;: :z 011F
| gé 50 o1tp——""3TNCTION
~— 01 ollc
l ? e
Figure 4-9

Executing a RET from subroutine instruction.

4"28 l UNIT FOUR

The mnemonic for this instruction is also RET. Therefore, to set it apart
from a normal return instruction, the mnemonic is followed by the
immediate value that is to be added to the Stack Pointer. As an example,
“RET 4H” means place the address of the next instruction in the IP,
then add 0004H to the Stack Pointer. Figure 4-10 shows the effect of
the RET 4H instruction. You may have noticed that it is very similar
to the RET instruction in Figure 4-9. However, there are now three
stages to the instruction.

In Part A, the instruction has not been executed. Thus, the Instruction
Pointer contains the address of the RET instruction in the subroutine,
0127H. The Stack Pointer contains an address that points to the sub-
routine return address.

In Part B of Figure 4-10, the RET 4H instruction is fetched and decoded
in the MPU. Two immediate results are shown in the figure. First, the
IP is loaded with the address, 011DH, of the next instruction to be
executed. Second, the Stack Pointer is incremented by two. Thus, the
SP now points to address 01F6H in the stack.

Part C of the figure completes the RET 4H instruction by adding 4
to the Stack Pointer. Thus, the new top of stack is at address 01FAH.
The four bytes of useless data have been bypassed.

Remember to always add the correct value to the Stack Pointer. Each
digit represents one byte in memory. Therefore, if you pushed three
words into the stack prior to the CALL, you would use the immediate
value 6H with your RET instruction to bypass those values. Because
the stack will only accommodate word values, the immediate value
following the RET instruction is always an even number.

You may have noticed that even though we only added “4” to the
Stack Pointer in Figure 4-10, the instruction had two bytes of immediate
data, 00H and 04H. This is because the RET instruction is performing
a word-sized add operation. Therefore, whenever you use this form
of return instruction, always expect it to occupy three bytes in memory,
even if the immediate value is OFFH or less.

One last consideration. You should always end a “called subroutine”
with a “return (or return and immediate add) from subroutine” instruc-
tion. The CALL and RET instructions are designed to complement each
other. To get a better handle on how the CALL and RET instructions
would be used to access a subroutine, let’s examine the “Tick-Tock”
program we flowcharted earlier in this unit.

Subroutines 4'29

MPU {RAM MPU 1RAM
y O1FA
[01F9 |
Sy n
STACK POINTER l = Bl 1 STACK POINTER | < Bl
T l S IC n1F7 Sits | 8 3 017
% P 01F6 & 7 016 ~— NEW TOP
i = I — QOF STACK
n1Fs
INSTRUCTION POINTER ol e INSTRUCTION POINTER 0 01F5
[o] | 10 01F4 [om | | 10 01F4
B i
[= ToP O l e
| ’;‘ 8A 012A STACK ‘ g 84 012A
= 00 0129 5 0 0129
o
| g’;:. 04 0128 l E‘:n 04 0128
b ~_INSTRUCTION o) niz7
|1 | mz R L
 —— ™
" INSTRUCTION
: 80 0110 I BO 01D =—""pg|NTER
. a —
(A) 8EFORE EXECUTION AFTER RETURN
MPU RAM
| NEW TOP
| OF STACK
STACK POINTER | -
4
E
INSTRUCTION PO INTER ,
[o | ‘
I % 8A JlZA
5 o 0129
I o
& B 012
prse |
V.2 c3 o127
| B |onp--INSTRUCTION

(©) AFTER IMMEDIATE ADD

Figure 4-10
Executing a “return and immediate add” instruction.

4'30 UNIT FOUR

Using CALL and RET

Recall that the “Tick-Tock” program is being used to control a hypothet-
ical sound generator outside the microcomputer. Every half-second the
microcomputer tells the generator to produce a sound of a “tick” or
a “tock.” The main program controls the transfer of data to the
generator, while the subroutine provides the necessary half-second
delay between data transfers. Figure 4-11 shows the program.

To begin, data byte 01H is loaded into the AL register. This value will
be used to tell the generator to make the “tick.” Next, the value in
the AL register is transferred to the generator. The mnemonic OUT
is the output command, while 25H is the address of the generator input/
output port. We are introducing this instruction now to help illustrate
our subroutine. Later in the course, we will fully explain how the IN
and OUT instructions are used to interface the microcomputer to its
peripherals. As soon as the generator gets its “tick” signal, the MPU
calls the delay subroutine. The operand DELAY serves as the target
address for the first instruction in the subroutine.

TITLE UNIT4 -- PROGRAM 2 -- TICK-TOCK GENERATOR

i
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, S5: COM_PROG
100H
SP,OFFSET TOP_OF_STACK ;Get STACK address

23

START:
GENERATE_SIGNAL:

MOV AL,Q1H 1Data for tick
ouT 25H, AL ;Output to generator
CALL DELAY ;Wait for half-second
HOV AL, ®FCH ;Data for tock
ouT 25H, AL sOutput to generator
CALL DELAY sWait for half-second
JP GENERATE_SIGNAL jRepeat tick-tock
I‘ELRY: MOV DL, 82H ;Start half-second delay
MoV CX, @AAAAH ;Load count register
CYCLE: NOP iHaste time
LOOP CYCLE sDec count, is it zero?
DEC m ;Count one loop
JNZ CYCLE sMain loop done? If not,
srepeat inner loop
RET sDone, return from CALL
: 1.0} 19 DUP (?) sSTACK size defined
TOP_OF _STACK LABEL WORD yldentify top of STACK
L]
COM_PROG ENDS
END START

Figure 4-11
“Tick-tock” program.

Subroutines 4'31

This particular subroutine relies on the fact that every instruction exe-
cuted by the MPU takes a specific amount of time. This time is deter-
mined by the MPU clock rate and the number of clock cycles required
to complete the instruction. Once you know the time for each instruc-
tion, it's a simple matter of adding up the number of instructions
needed to create a specific delay. The instructions in the subroutine
were selected to give that half-second delay required by the program.
Let’s see how the instructions are used to create that delay.

Data byte 02H is loaded into the DL register to serve as the main delay
loop counter in the routine. Next, the Count register is loaded with
0AAAAH, to set up a second delay loop within the routine. Then a
NOP instruction is executed. This provides a convenient method of
wasting time without affecting any Flags or registers. In the case of
the 8088 MPU, a NOP instruction takes three clock cycles to execute.
(The Instruction Set in Appendix D lists the number of clock cycles
used by the MPU to execute every instruction.) The following LOOP
instruction decrements the Count register and then checks its contents
for zero. Since the contents are certainly not zero now, the routine
loops back to the target address CYCLE. The NOP-LOOP cycle con-
tinues until the Count register is zero, at which time, the program “falls-
through” the loop to the next instruction. The DL register, our main
loop counter, is decremented and then its contents are checked for
zero. If DL is not zero, CYCLE is repeated OFFFFH more times. This
occurs because, the first time the LOOP instruction is executed, the
CX register is decremented from zero to OFFFFH.

When DL is finally zeroed, the half-second delay period is over. The
next instruction, RET, sends the MPU back to the main program mem-
ory address found at the top of the stack. That address points to the
MOV AL,0FCH instruction. Thus, the MPU begins execution of the
main program by moving OFCH into the AL register.

The AL register now contains the value needed to make the generator
produce the “tock” sound. This value is transferred to the generator
through the same output port, 25H, as was used for the “tick” value.
After transfer is complete, the delay subroutine is again called. Only
this time there is a new address pushed into the stack. Thus, when
the MPU returns from the subroutine, the IP will have the memory
address for the instruction J]MP GENERATE_SIGNAL rather than the
earlier instruction MOV AL,0FCH.

4-32 | uniTFour

When the jump instruction is executed, the MPU will jump back to
the beginning of the main program and load the “tick” value into the
AL register. In this manner, the program is recycled. And, it will con-
tinue to cycle until the microcomputer is reset. You should not get
the impression that you must return from a subroutine before calling
another; subroutines can be nested.

Subroutine Nesting

Because the CALL instruction uses the stack to save the return address
of the next instruction, a subroutine call can be made from within a
subroutine. The only limiting factor is the capacity of the stack. Let’s
look at an example.

Figure 4-12 shows a situation in which the main program calls sub-
routine A. In turn, subroutine A calls subroutine B. Thus, subroutine
B would be considered a nested subroutine. That is, a nested subroutine
is a program segment that is called by another subroutine. If control
is to be eventually returned to the main program, two return addresses
must be saved and recalled in the proper order. Figure 4-12 is a very
simple example of how this could be done.

Initially, assume the stack is empty and the main program instructions
are being executed. When the CALL instruction is read and executed,
three things happen. First, the SP register is decremented by two. Next,
the address of the next instruction, IP value 0122H, is pushed into
the stack. Then, the address offset in the CALL instruction is loaded
into the IP register. This directs the MPU to subroutine A, which starts
at offset address 0131H.

Notice that halfway through subroutine A another CALL instruction
is encountered. When it is read and executed, the process is repeated.
First the SP register is decremented by two. Next, the address of the
next instruction, IP value 0138H, is pushed into the stack. Then the
address of the address offset in the CALL instruction is loaded into
the IP register. This directs the MPU to subroutine B, which starts at
offset address 01D3H.

Subroutines 4"33

Subroutine B has no nested subroutines of its own, so the program
flow is through the subroutine as shown. The last instruction in the
subroutine is the RET instruction. When this instruction is read and
executed, the return address is popped from the stack and placed in
the IP register, and the SP register is incremented by two. The MPU
then begins executing code at offset address 0138H in subroutine A,
pointed to by the IP register.

When the RET instruction is read and executed, the process is repeated
one more time. The return address at the top of the stack is moved
into the IP register and the SP register is incremented by two. The
MPU then begins executing code at address 0122H in the main program.

STACK STACK
SP
o0 01
22 22 - 5SP
01 01
L2 -

RET RET
ADDRESS K 4
0122 0137 01
0136

0121 01 D3

0120 31 035 CALL
011F CALL
0131 01D3
SUBROUTINE SUBROUTLINE
A B
4 [
MAIN
PROGRAM 1

N o 7

—5 Lo 2

7 o1

1 38 -—SP
STACK STACK STACK

Figure 4-12
Handling nested subroutines.

4-34 | uniTFouR

Here are a few points to keep in mind when nesting subroutines:

1. Always use a return instruction to return from a sub-

routine call. This is especially important in nested sub-
routines.

Whenever you push data into the stack, always pop an
equal amount of data from the stack. If you forget, the
program may wind up returning to an unknown area of
memory.

Avoid calling a previously nested subroutine. The sub-
routine return may not send the MPU to the correct (de-
sired) program location.

. Physically separate the code for a subroutine from the code

for the main program or another subroutine. This will help
reduce confusion if you must modify the code at some
later date.

Subroutines 4'35

Self-Review Questions

21. The CALL instruction decrements the Stack Pointer by two and
then stores the return address at addresses SP and SP+1.

True/False

22. The RET instruction causes a change in program direction by
moving an address into the
register.

23. The target address for a return instruction is always at the top
of the stack.

True/False

24. In order to bypass four words of data in a stack, the return im-
mediate instruction must contain the immediate value

25. A CALL instruction can be used to access more than one sub-
routine in a program.

True/False

26. A RET instruction at the end of a subroutine can cause the MPU
to jump to any part of the program and begin execution.

True/False

4'36 UNIT FOUR

INCLUDING FILES

As you gain programming experience, you will find there are a number
of subroutines that are repeated in nearly every program. Some of these
routines, such as a disk file reader, contain over a page of code. Entering
this code every time you write a program is just not practical. MACRO-
86 has an assembler directive that solves the problem, it’s called the
INCLUDE directive.

The INCLUDE directive tells the assembler to read the specified ASM
file, combine the code with the current ASM file, and assemble all
of the code as one unit. The code being included must be valid source
code, and it must be compatible with the current program being assem-
bled. Code compatibility refers to the use of names, labels, and symbols.
Improper references will be flagged as assembly errors.

The directive takes the form
INCLUDE <file-name>

where <file-name> is the valid name for an ASM source code file.
Examples of INCLUDE directives are:

INCLUDE DELAY.ASM
INCLUDE B:GEN.OUT.ASM

In the first example, DELAY.ASM is a subroutine that is located on
the current, or active, disk drive. The second example, B:GEN_
OUT.ASM, indicates that subroutine GEN_OUT.ASM is located on disk
drive B. It is important that you indicate the location (disk drive) of
the file if the file is not located on the current drive. Assuming the
program is being assembled on drive A, any file that is included from
drive B must have its file name preceded by a B: drive indicator.

Although we used the ASM file extension in both examples, it isn’t
necessary. You can use almost any extension, such as FIL, INC, or DAT;
or you can leave off the extension. However, we recommend you don’t
use the predefined extensions we discussed earlier (EXE, COM, OB],
CRF, LIB, and MAP).

Subroutines | 4'37

File Format

Creating a file that will be included with another file is quite simple.
You don’t have to use any SEGMENT, ASSUME, or ENDS directives.
All you need are code, data, and any comments that might make the
file easier to identify. Any labels, symbols, or names should be unique
to the file to prevent duplication in the main program.

Figure 4-13 is an example of a simple include routine. As a matter
of fact, it’s the half-second delay subroutine from the program in Figure
4-11. The code hasn’t been changed; however, we have added a number
of comments. These comments:

1. Identify the routine and its function.

2. Identify any data, from the main program, that is needed
for the routine to function properly. In this example, none
is required. The data can reside in a register or memory,
although data is usually transferred through a register. The
location must be identified.

3. Identify any data that must be returned to the main pro-
gram. In this example, no data is returned. If data is re-
turned, the location of that data must be specified.

4. Identify any registers that are modified by the routine. In
this example, the CX and DL registers are modified. This
means you either don’t use CX and DL in the main pro-
gram, or you save the contents of CX and DL in the stack
prior to calling the subroutine or after the subroutine is
called.

s INCLUDE file DELAY.INC is half-second delay routine.
s INPUT to routine: None

sOUTPUT from routine: None

;Registers modified: DL and CX

L]
DELAYs MOV DL, 024 sStart half-second delay
MOV CX, @ARRAH ;Load count register
CYCLE: NOP sWaste time
LOoP CYCLE ;Dec count, is it zero?
DEC DL ;Count one loop
JNZ CYCLE sMain loop done? If not,
jrepeat inner loop
RET ;Done, return from CALL
Figure 4-13

Example of an include file.

4-38

UNIT FOUR

While there is no fixed format for comments, you should make it a
habit to identify these four subjects. It could resolve a lot of questions
when you try to include the file in another program.

Figure 4-14 is an example of a program using the assembler directive
INCLUDE. 1t is the “tick-tock” program without the delay subroutine.
We've replaced the delay subroutine with the directive:

INCLUDE DELAY.INC

DELAY.INC is the name of the file in Figure 4-13. When the assembler
encounters the directive INCLUDE, it will stop assembly and read the
file into the main program source code. Then it will continue assembl-

ing the program from that point.

TITLE UNIT4 ~- PROGRAM 3 -- USING AN INCLUDE FILE

L)
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG
3
ORG 166H
START: MOV SP,OFFSET TOP_OF _STACK ;Get STACK address
GENERATE_SIGNAL:

MOV AL,01H sData for tick
ouT 25H, AL ;0utput to generator
CALL DELAY jHait for half-second
MOV AL, 9FCH ;Data for tock
out 25H, AL ;0utput to generator
CALL DELAY sWait for half-second

JMP GENERATE_SIGNAL ;Repeat tick-tock
INCLUDE DELAY. INC

DW 10 DUP (?) 3STACK size defined
TOP_OF_STACK LABEL WORD ;ldentify top of STACK
i
COM_PROG ENDS

END START

Figure 4-14
Program using included file.

Figure 4-15 is the program listing generated by the assembler. Notice
that the assembler treated the code from the main program, as well
as the code from the included file, as one complete program. To help
you identify which part of the code came from an include file, the
letter C precedes each line of the included file beginning with the IN-
CLUDE directive.

Subroutines 4'39

The Microsoft MACRD Assembler
UNIT4 — PROGRAM 3 -- USING AN

~No-n W

~0 ®

1
12
13

14

gye

0100
0100

@103
0103

0103
0107
010A
el1eC
010

o111

0113
o115
o118
0119
o1l
211D

o11F

0120

BC 0134 R

BO 01
E6 25
E8 0113 R
B® FC
ES 25
E8 0113 R

EB F@

B2 02
B9 AAAR
90

€2 FD
FE CA

75 F9

3

01-27-84 PAGE 1-1
INCLUDE FILE

TITLE UNIT4 -- PROGRAM 3 -- USING AN IN
CLUDE FILE

COM_PROG SEGMENT
ASSUME CS1CON_PROG, DS: CON_PROG

,55:COM_PROG
}
ORG 10eH
START: MOV SP,OFFSET TOP_OF_STACK
;Get STACK address
GEMERATE_SIGNAL:
nov AL,01H ;Data f
or tick
ouT 25H, AL ;Output
to generator
CALL DELAY sHait f
or half-second
MOV AL, @FCH sData f
or tock
ouT 25H, AL ;Output
to generator
CALL DELAY sWait f

or half-second
JHP GENERATE_SIGNAL ;Repeat
tick-tock
L]
C INCLUDE DELAY.INC
C ;INCLUDE file DELAY.INC is half-second
delay routine.

C INPUT to routine: None
C ;OUTPUT from routine: None
C j3Registers modified: DL and CX
C 3
C DELAY: MOV DL, o024 ;Start
half-second delay
C MOV CX, OAARAH jload c
ount register
C CYCLE: NOP sHaste
time
c LooP CYCLE ;Dec co
unt, is it zero?
c DEC DL ;Count
one loop
c JNZ CYCLE sMain 1
oop done? If not,
c jrepeat
inner loop
c RET ;Done,
return from CALL
c
L
D 1e DUP (?) 1 STACK

size defined

Figure 4-15A

Program listing generated by the assembler.

4‘40 UNIT FOUR

The Microsoft MACRO Assembler 01-27-84 PAGE 1-2
UNIT4 -- PROGRAM 3 -~ USING AN INCLUDE FILE

34 2777

35]

36

3 0134 TOP_OF_STACK LABEL WORD ;Identi

fy top of STACK

38 i

39 0134 COM_PROG ENDS

80 END START

Figure 4-15B
Continuation of the program listing
generated by the assembler.

Self-Review Questions
27. The assembler directive is used to combine

source code files to produce one file.

28. The file name TIME.OB] is considered a valid name for a routine
to be combined with another file or program.

True/False

29. When combining files, each file must contain a SEGMENT and
an ENDS assembler directive.

True/False

30. Every include file should contain comments covering four subject
areas. These subject areas are:

A.

Subroutines 4'41

EXPERIMENT

Using Subroutines
OBJECTIVES: 1. Demonstrate the 8088 MPU memory
stack.

2. Demonstrate ways you can use the
stack.

3. Demonstrate the subroutine instruc-
tions.

4. Demonstrate the INCLUDE assembler
directive.

Introduction

The jump and loop instructions introduced in Unit 3 opened the door
to a number of new programming possibilities. This unit carried the
process one step further by showing you how to jump to and return
from specialized program areas called subroutines. To make the transi-
tion to the CALL and RET instructions, you had to learn about a new
form of data storage used by the MPU called the stack. This experiment
will give you an opportunity to play with the stack. It will also explore
the programming possibilities using program subroutines both within
the main program and in separate files that can be “included” when
the main program is assembled.

4'42 UNIT FOUR

Procedure

Although you probably won’t use the stack manipulation instruc-
tions very often in your early attempts at programming, you
should know how they affect the MPU and memory. The first
program in this experiment is a “do nothing” that simply moves
data around in the MPU registers and memory using the various
stack instructions. Call up the editor and enter the program in
Figure 4-16. When you finish, assemble and convert the source
code into a COM file. Then load the COM file into memory with
the debugger.

TITLE EXPERIMENT 4 -- PROGRAM 1 -- STACK MANIPULATION

1
COM_PROG SEGMENT

ASSUME CS:COM_PROG,DS: COM_PROG, S5: COM_PROG
t

ORG 100H
START: MOV SP,OFFSET TOP_OF_STACK ;Get STACK address-
MOV AX, @EESSH jLoad Accumulator
MOV BP, 9999H ;Load Base Pointer
PUSH AX ;Store Accumulator in stack
PUSH BP ;Store Base Pointer in stack
PUSHF 3Store Flags in stack
POP cX ;Move Flags inte Count reg.
POP DATAZ ;Store Base Pointer in memory
MOV DATAL, 9ARAAH 1Store constant in memory
POP DATAL + 2 ;Store Accumulator in memory
INT 3 sReturn to Debugger
i
DATAI DM 4 DUP (7) sReserve 4 words in memory
DATAZ DM 9 sSet memory word to zero
i
DH 204 DUP (?) ;STACK size defined
TOP_OF_STACK LABEL WORD ;Identify top of STACK
H
COM_PROG ENDS
END START
Figure 4-16
Program to show how data is moved into
and out of the stack.

Type “R” and RETURN., The Stack Pointer contains the value
----H‘

When a program is loaded by the debugger, the debugger assigns
the Stack Pointer value OFFFOH. If you don’t change that value
with program code, the debugger will assume that is the top of
stack. During debugger operations, address and control data are
temporarily stored in the stack by the debugger. You will see
the result of this temporary storage as we examine your program.

Subroutines 4'43

When a COM program is executed normally, the system program
loader assigns a different value to the Stack Pointer. If there is
sufficient memory, OFFFFH is loaded into the Stack Pointer. If,
on the other hand, the program memory segment does not contain
64K of memory, then the Stack Pointer is loaded with the offset
address of the last byte in memory. Finally, the Stack Pointer
is decremented-by-two and a word of zeros are loaded into the
stack. These values are, of course, meaningless if the program
loads a different value in the Stack Pointer, as is the case with
the program you are examining.

Type “D100” and RETURN. Notice that the value 00 is contained
within memory locations 011CH through 0165H.

These are the memory locations identified by the program. As
you single-step through the program, data will be moved into
and out of this memory by the program and the debugger. The
memory was initially zeroed by the debugger when it recognized
the “DUP (?)” statement. The statement itself did not cause the
zeros to be loaded.

Single-step through the program and answer the following ques-
tions. When you are asked to identify a value at a specific address,
use the command “D100” to display the block of memory contain-
ing your program and its stack.

A. After the first instruction is executed, the Stack Pointer
contains the value _ _ _ _ H. Examine the stack. Notice
that the debugger used the first three word locations at
the top of the stack to temporarily store data. This data
will change as you single-step through the program.

The value 0166H is the offset address loaded into the Stack
Pointer by the program. It points to the top of the program
stack. The debugger uses the same stack for temporary

storage of data.

B. After the third instruction is executed, the Accumulator
contains the value - _ _ _ H and the Base Pointer contains
R

These values were established to give the MPU something
to PUSH into the stack. The numbers have no significance.

4"44 UNIT FOUR

After the fourth instruction is executed, address 0165H

contains the value _ _ H and address 0164H contains
the value _ _ H. The Stack Pointer contains the value
—

The PUSH AX instruction caused the Stack Pointer to de-
crement by two, to 0164H. Then the high byte in the Ac-
cumulator, OEEH, was moved into location 0165H and the
low byte, 55H, was moved into location 0164H. The de-
bugger again used the stack to hold temporary data, but
it made sure that the data pushed by the program was
saved at the top of the stack.

After the fifth instruction is executed, address 0163H con-
tains the value _ _H and address 0162H contains the value
_-H. The Stack Pointer contains the value ____H.

This instruction pushed the contents of the Base Pointer
into the stack. The Stack Pointer was decremented by two
and now contains the value 0162H.

After the sixth instruction is executed, address 0161H con-
tains the value _ _ H and address 0160H contains the value
__H. The Stack Pointer contains the value ____H.

The PUSHF instruction moved the contents of the Flag
register into the stack. Address 0160H contains the low-
byte value of the register, while address 0161H contains
the high-byte value of the register. Experience with many
different systems using the 8088 MPU suggests that your
Flag register contained OF102H or a similar value. This
might seem odd, since the debugger display indicates that
the Flag register bits are zero.

Recall, however, that even though the Flag register con-
tains only nine flag bits, it is treated as a 16-bit register
during a push operation. Therefore, the MPU must some-
how account for the remaining seven bits. It does this by
treating these bits as blank, or “don’t care”, bits. Because
the MPU doesn’t care what value these bits contain, the
value stored by the transfer operation is essentially ran-
dom. For that reason, the third word in your stack may
not be 0OF102H.

Subroutines 4‘45

Figure 4-17 shows how the bits are arranged in the Flag
register. It also shows the binary equivalent for the value
0F102H that is probably stored in your stack. Notice that
the eight flag bits recognized by the debugger are zero.
The ninth bit, T (trap) flag, is set to one. This flag bit
is used by the debugger, through the MPU, to control the
single-step operation. It is always set when you are using
the debugger; that’s why the debugger doesn’t display its
condition. The remaining flag bits are those don’t care bits.
Because they have no guaranteed logic state, you should
never rely on their condition to control an operation.

N [ofifr]s[zfafiefic

OFI2H=1 1 1 1 0 0 01 0 0000010

Figure 4-17
Arrangement of the Flag register bits and their 16-bit
value. The shaded areas are “don’t care” bits.

After the seventh instruction is executed, the Count regis-
ter contains the value _ _ _ _ H and the Stack Pointer con-
tains the value____H.

The Count register now contains the same value as the
Flag register. The process of popping that data from the
stack also incremented the Stack Pointer by two. Some-
thing else happened that probably surprised you — the
Flag register data disappeared from the stack. Under nor-
mal circumstances, that data would still be in the stack.
However, the debugger is sharing the stack with the pro-
gram. Thus, when data is popped from the stack, the de-
bugger assumes it is free to use that area to store temporary
data. It’s always a good idea, when running two or more
programs simultaneously, to know how each program af-
fects the operation of the other.

4-46 | uniT FouR

After the eighth instruction is executed, address 0124H

contains the value _ - H and address 0125H contains
the value - _ H. The Stack Pointer contains the value
==—=H;

Until now, all of the stack operations have involved the
MPU registers. The eighth instruction moved the value
9999H into a location in memory. Thus, you can see that
you are not limited to register moves when using the stack.
This is true for both pushing and popping data.

After the tenth instruction is executed, address 011EH
contains the value _ _ H and address 011FH contains
the value _ _ H. The Stack Pointer contains the value
S (i

The ninth instruction simply moved 0AAAAH into mem-
ory to provide you with a reference for the tenth instruc-
tion. That instruction popped the last word in the stack
into a memory location that was indexed one word from
the name DATA1 using the assembler operator add (+).
Again, the Stack Pointer is incremented by two, returning
it to the original top of stack value. Finally, the data in
the stack is overwritten by the debugger. Thus, you have
no record of the data you moved into the stack because
of the debugger’s manipulation of the program stack. Had
the program been executed in a normal manner, the three

words the program pushed into its stack would still be
there.

Subroutines 4‘47

Discussion

Working with the stack is not much different from working with the
MPU registers or memory. You just have to remember where the data
is located within the stack. Probably the most important rule for work-
ing with the stack is to always pop the data from the stack in reverse
order. For instance, suppose you need to save the contents of three
registers before you execute a subroutine. Before running the sub-
routine, you PUSH AX, BX, and DX. When the subroutine is completed,
you POP DX, BX, and AX, in that order. If you pop the data in the
same order that it was pushed, the contents of AX and DX will be
exchanged.

The next program is a counting routine that illustrates the call and
return from call instructions. So that you can indirectly watch the pro-
gram use the CALL and RET instructions (they access a 1-second delay
routine), we will also introduce a new system interrupt, INT 21H. De-
pending on how it is used, INT 21H lets your program control many
functions of the computer including character display. Thus, when you
run the program, you will be able to see the program counting and
displaying a string of 80 decimal numbers.

4-48 | unitFour

Procedure Continued

5. Call up the editor and enter the program in Figure 4-18. Assemble
and convert the source code to a COM file.

TITLE EXPERIMENT 4 -- PROGRAM 2 -~ CALLING A SUBROUTINE

COM_PROG SEGMENT
ASSUME CS31COM_PROG, DS:COM_PROG, S51 COM_PROG

i

ORG 1004
START: MOV SP,OFFSET TOP_OF _STACK ;Get STACK address
MOV Cx,89 ;Set number of counts
RESTART: MOV DL,’@’~1 ;Set-up number register
gwith ASCIT @ minus 1
COUNT: INC DL sMake ASCII code for number
cwe o,’9 3Is number above decimal range?
JA RESTART ;Yes, restore number register
MOV AH,2 sOutput character interrupt function
INT 21H sFunction requesting interrupt
CALL DELAY sDelay one second between numbers
LOoP COUNT sRepeat if necessary
mov AH,@ ;End program interrupt function
INT 21H sFunction requesting interrupt
i;ILﬁY: MoV BL,4 sStart 1 second delay subroutine
MoV DI, 04568H sLoad count
DELAY1: DEC DI 1Count down for delay
JNZ DELAY1 ;1s inner delay loop done?
DEC BL iCount one inner delay loop
JNZ DELAY! sMain delay loop done?
RET
L]
W 160H DUP (?) sSTACK size defined
TOP_OF_STACK LABEL WORD ;Identify top of STACK
L
COM_PROG ENDS
END START

Figure 4-18
Program to demonstrate subroutine calling

by displaying a string of numbers.

Subroutines 4'49

6. To run a program under the MS-DOS disk operating system, the
program name must have the file extension COM, EXE, or BAT.
However, when you command MS-DOS to run a program, you
should only identify the program name — leave off the file exten-
sion. Thus, to run the program P4-6.COM, you would simply type
“P4-6” and RETURN. MS-DOS will locate the program on the
disk; load it into memory; and finally, tell the MPU to execute
the code.

Run your program — type the program name and RETURN. The
disk drive will run for a few seconds, indicating that the program
is being read into memory. Then the character 0 will appear on
the next line of the display. After a 1-second delay, the character
1 will appear. This process will continue until the count reaches
nine, then the count will repeat. One second after the eighth nine
appears, the program will stop and control will be returned to
MS-DOS.

Discussion

The program you just ran is designed to sequentially display the deci-
mal numbers zero through nine, and repeat the sequence eight times.
After each number is displayed, the program waits for one second.
This waiting period is controlled by a 1-second delay subroutine that
is called by the program.

The display process is controlled by a subroutine in MS-DOS. The sub-
routine is “called” by using an interrupt instruction; in this case, INT
21H. Interrupt 21H actually comprises a group of computer-controlling
subroutines. To access one of these subroutines, you identify the
routine number; then you execute the interrupt. The character display
subroutine is routine number 2.

At the end of the program, system control is returned to MS-DOS
through another INT 21H subroutine. In this case, the routine is number
0. Later in the course, we will be using a number of different INT
21H subroutines. If you are interested in examining the other INT 21H
operations, refer to the Appendix of your “DOS” manual, under Inter-
rupt Function Calls.

Now let’s examine the program in detail.

4-50 | unitFour

Procedure Continued

Load your program COM file into memory with the debugger.
Using Figure 4-19 as a reference, single-step to the first interrupt
instruction at address 0111H.

By now you should be familiar with the code in these program
steps, so we’ll limit the description to the instructions. To begin,
the value 80 is loaded into the Count register to set the number
of numbers that will be displayed. Then the ASCII value for the
character 0 minus one is loaded into the DX register. Two impor-
tant concepts are introduced in this step.

First, whenever you use the ASCII code for a printable character,
it’s a good idea to use the character enclosed within quotes, and
let the assembler determine the numeric code. It’s not that you
might make a mistake entering the code; rather, it makes the in-
struction easier to understand. The character 0 means more than
the value 30H.

The second concept is tied to the first. We could have used the
value 2FH and accomplished the same goal, but subtracting one
helps to show the purpose of the instruction. It is setting up a
register to hold the ASCII value of the numbers that will be dis-
played. To generate each number, one is added to the value in
the register. Since this instruction isn’t part of the number gener-
ating (COUNT) loop, it must store an ASCII value one less than
the first character to be displayed.

The first instruction in the COUNT loop adds one to the ASCII
value in the DL register. This produces the ASCII code for the
character 0. Each time the loop is repeated, one is added to pro-
duce the next sequential decimal number character.

Since the program is designed to display only decimal numbers,
DL must be tested to determine when it increments beyond the
decimal number range. This is accomplished by comparing DL
to ASCII 9. The next instruction, jump if above, then makes the
decision to continue the loop or start a new count loop.

subroutines | 4-51

The Microsoft MACRO Assembler 02-10-84 PAGE 1-1
EXPERIMENT 4 -- PROGRAM 2 -- CALLING A SUBROUTINE

1 TITLE EXPERIMENT 4 -~ PROGRAM 2 -- CALL
ING A SUBROUTINE

2 i

3 0000 COM_PROG SEGMENT

4 ASSUME CS:COM_PROG, DS: COM_PROG
,55: COM_PROG

5 i

[0100 ORG 100H

7 ©10@ BC €329 R START: MOV SP,OFFSET TOP_OF _STACK
;Get STACK address

8 01063 B9 0050 MOV CX,80 ;Set nu
mber of counts

9 0186 B2 2F RESTART: MOV DL,’@’~1 ;Set-up
number register

10 jwith A
SCII @ minus 1

11 @108 FE C2 COUNT: INC DL sMake A
SCII code for number

12 0104 80 FA 39 CcHp o,y ;Is num
ber above decimal range?

13 e1eD 77 F7 JA RESTART iYes, r
estore number register

14 Q10F B4 @2 MOV AH, 2 3Output
character interrupt function

15 o111 €D 21 INT 21H jFuncti
on requesting interrupt

16 0113 EB @1IC R CALL DELAY ;Delay
one second between numbers

17 0116 E2 Fo LOOP COUNT sRepeat
if necessary

18 @118 B4 00 MOV AH,0 3End pr
ogram interrupt function

19 o11A CD 21 INT 21H sFuncti
on requesting interrupt

26 3

21 011C B3 o4 DELAY: MOV BL,4 ;Start
1 second delay subroutine

22 O11E BF 4568 MoV DI, e4568H ;Load ¢
ount

23 0121 4F DELAY1: DEC DI ;Count
down for delay

24 e122 75 FD JNZ DELAY1 31s 1mn
er delay loop done?

25 @124 FE CB DEC BL ;Count
one inner delay loop

26 0126 75 F9 JNZ DELAY1 jMain d
elay loop done?

27 o128 C3 RET

28 :

29 0129 0100 [DW 10@H DUP (?) 1 STACK
size defined

30 7"

31]

Figure 4-19A

Assembler listing of the subroutine call program.

4-52 | uniT Four

The Microsoft MACRO Assembler 02-10-84 PAGE 1-2
EXPERIMENT 4 -- PROGRAM 2 -- CALLING A SUBROUTINE

R
33

34
<]
3%

9329 TOP_OF _STACK LABEL WORD s 1denti
fy top of STACK
i
329 COM_PROG ENDS
END START
Figure 4-19B
Continuation of the assembler listing of the
subroutine call program.

Assuming the count is continued, the next instruction loads the
interrupt 21H function select number into the AH register. When
the interrupt is executed, the MPU examines the AH register to
determine what system function is to be performed. The number
two indicates a “display character” function. It is assumed by
the display character subroutine that the ASCII code for the char-
acter to be displayed is in the DL register.

The next instruction to be executed is INT 21H. Single-stepping
through an interrupt is practically not feasible. The best way to
handle interrupts while in the debugger is to use the debugger
Go command, with a break point, and let the MPU execute the
interrupt. To do this, you would type G and the offset address
in the program where execution should stop. For your program,
that offset address is the address of the next instruction. Execute
the interrupt, type “G113” and RETURN. Notice that when the
debugger executed the interrupt, the character 0 appeared on the
next line. Then the normal debugger register display appeared
on the following lines.

Single-step through the next instruction, the CALL DELAY in-
struction. Notice that the Stack Pointer register decremented by
two, and the Instruction Pointer now contains the offset address
of the first instruction in the DELAY subroutine. Now examine
the top of stack, type “D327” and RETURN. Offset address 0327H
contains the value - _ H and address 0328H contains the value
_ - H. These contain the low-byte and high-byte of the offset ad-
dress of the next instruction.

Subroutine5J 4'53

10.

11.

12,

13.

14.

The DELAY subroutine is similar to the one described earlier
in this unit, only here the delay is for one second (IBM approxi-
mately 1.1 seconds) rather than one-half second. Also, the NOP
and LOOP instructions have been replaced with DEC and JNZ
instructions because the Count register is being used in the main
program. Since it will take too long to single-step through the
DELAY subroutine, use the GO with break point command to
jump to its end. Type “G128” and RETURN. The Instruction
Pointer should be pointing at the return from subroutine instruc-
tion.

Single-step through the RET instruction. The Stack Pointer is in-
cremented by two, and the Instruction Pointer contains the offset
address value that was previously stored in the stack by the CALL
instruction. The next instruction to be executed is the LOOP
COUNT instruction that follows the CALL DELAY instruction.
You've now had the opportunity to observe the results of the
operation of the call and return from call instructions. Rather
than repeat the loop, let’s exit the program gracefully.

First, you must reduce the Count register contents to one (not
zero). Type “RCX"” and RETURN. The debugger will display the
contents of the Count register and prompt you for a new value.
Type “1” and RETURN. The Count register now contains the
value one.

Single-step through the LOOP COUNT instruction. The Counter
is decremented to zero and the loop is ignored.

Single-step through the next instruction. This loads the value zero
into the AH register. We could have used the SUB AH,AH instruc-
tion and saved execution time, but it wouldn't have conveyed
the same meaning. This instruction is loading the function
number for the next INT 21H instruction. The act of loading a
number is more significant. The number zero identifies the inter-
rupt subroutine that performs the necessary system housekeeping
(file and memory handling) to properly exit a program.

4-54

UNIT FOUR

15. Again, you shouldn’t try to single-step through an interrupt; use
the Go command instead. Since this is the last instruction in
the program, you won’t need a break point. Type “G” and RE-
TURN. The debugger will display the message “Program Termi-
nated Normally.” Notice that, because you executed the program
while you were running the debugger, you are still in the debug-
ger. To exit, you will have to type “Q” and RETURN.

Discussion

This program gave you a chance to see how a subroutine is called
and exited. It also introduced two new interrupt instructions: Interrupt
21H, function 2 is used to display a character; while interrupt 21H,
function 0 is used to exit a program and return control to the system
or another program.

You may have also noticed another change in the program from previ-
ous programs. The stack size was increased from 20H to 100H. This
change was necessary to support the interrupt instructions. MS-DOS
suggests that you add 80H words of memory to any program stack re-
quirements when using an interrupt 21H instruction.

Procedure Continued

16. Modify your program so that it will count and display all of the
hexadecimal number characters; leave the total count at 80. Run
the program to verify that it works.

Subroutines 4'55

Discussion

Figure 4-20 is one example of how the problem of displaying hexadeci-
mal characters can be solved. It is by no means the only way. You
could have used a number of subroutine calls to generate the count.
The important point is that you were able to make your program gener-
ate the hexadecimal number set.

TITLE EXPERIMENT 4 -- PROGRAM 3 -- HEXADECIMAL NUMBER DISPLAY

L
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, SS:COM_PROG

ORG 100H
START: MOV SP,OFFSET TOP_OF _STACK ;Get STACK address
MoV CX,80 1Set number of counts
RESTART: MOV DL,’0’-1 ;Set-up number register
swith ASCII @ minus |
COUNT: INC DL sMake ASCII code for number
(>, 4 DL,’9* 3Is number above decimal range?
JA HEX_CHAR j1Yes, start hex character output
MoV AH, 2 jOutput character interrupt function
INT 21H sFunction requesting interrupt
CALL DELAY sDelay one second between numbers
LOOP COUNT jRepeat if necessary
3 2000200000060 M0 M D020 000 MM 0NN MMM MMM MMM MMM NNN NN MM MANMRNMMA N MM NAR NN AN KRN
HEX_CHAR:
MoV DL, ’A*-1 jSet-up number register for hex values
COUNT_HEX:
INC DL 3Make ASCII code for number
(¥, o DL,’F’ iIs number above hex range?
JA RESTART jYes, restore decimal number register
MOV AH,2 s0utput character interrupt function
INT 21H sFunction requesting interrupt
CAaLL DELAY sDelay one second between numbers
LOOP COUNT_HEX sRepeat hex count if necessary

FRHMMMMMMENMMEMMAE KRR XXX KRR N MMM AMEAAARN AR R AAAN KA RN RE N R MR KRR R XX KRR X

HOV AH,0 3End program interrupt function
INT 21H sFunction requesting interrupt
i
DELAY: MOV BL,4 sStart 1 second delay subroutine
MoV DI, 94568H jLoad count
DELAY1: DEC DI ;Count down for delay
JNZ DELAY1 sIs inner delay loop done?
DEC BL sCount one inner delay loop
JNZ DELAY1 jMain delay loop done?
RET
i
DW 100H DUP (?) $STACK size defined
TOP_OF _STACK LABEL WORD sIdentify top of STACK
i
COM_PROG ENDS
END START

Figure 4-20
Program to display the hexadecimal character set.

4'56 UNIT FOUR

Since we can’t evaluate your program, let’s look at the program in Fig-
ure 4-20. The code to generate the hexadecimal characters is positioned
between the two rows of x’s to make it easier for you to locate. It is
identical to the original decimal display code; only here, the DL register
is loaded with the ASCII code for the character A minus one. To get
to this section of code, the previous jump if above (JA) instruction’s
target address is changed to point to the code.

Because the program loop count ended with the character F being dis-
played, the “end program” interrupt function location didn’t have to
be changed. However, if you have no control over the loop count, there
is a possibility the program could end after a decimal number is dis-
played. In this case, you should make some provision for executing
the interrupt regardless of where the program ended. One option is
to place an unconditional jump instruction after each loop instruction,
and have the jump target the “end program” interrupt function.

Before we move on to the next section, there is one more concept that
should be covered concerning interrupts. They are simply subroutines
that are part of the disk operating system (MS-DOS). Like all programs,
they use registers within the MPU. Normally, the interrupt preserves
the contents of any register it may use on the stack. Then, before return-
ing to the calling program, it pops the data back into the registers.
There are, however, exceptions to the rule; some registers may not be
preserved. These instances are identified in the DOS Manual, in the
description of the interrupt. For example, interrupt 21H function 2 does
not preserve the contents of the AX register.

Procedure Continued

17. The last section of Unit 4 described how common subroutines
could be saved as files on a disk, and then “included” when
needed in a program. Let’s see if you still remember the process.
Remove the 1-second delay subroutine from your counting pro-
gram and make it an include file with the name DELAY.INC.
Then rewrite the counting program so that it will “include” the
file DELAY.INC. Run the program to verify that it works.

Subroutines 4'57

Discussion

Figure 4-21 is an example of what your include file could look like.
Did you remember to preface the file with the appropriate comments?
It may not seem important now; but when you start writing larger sub-
routines, those comments can save you time.

s INCLUDE file DELAY.INC is a 1-second time delay subroutine.
;INPUT to subroutine:r NONE

sOUTPUT from subroutine: NONE

sRegisters modified: BL and DI

DELAY: MOV BL,4 4Start | second delay subroutine
MOV DI, 045668H sLoad count
DELAY1: DEC D1 sCount down for delay
JNZ DELAY1 1Is inner delay loop done?
DEC BL sCount one inner delay loop
Nz DELAY1 sMain delay loop done?
RET
Figure 4-21

Include file example.

4'58 UNIT FOUR

Figure 4-22 shows the main program with the INCLUDE assembler di-
rective. When this program is assembled, the source code in file
DELAY.INC will be combined with the program source code to produce
awhole program.

This completes the Experiment for Unit 4. Now is a good time to experi-
ment with the programs you wrote, and possibly write a few more
experiments to test your understanding of the material presented. For
instance, what would happen if you deleted the DELAY subroutine
and the two CALL DELAY instructions in the hexadecimal counting

program? When you have finished experimenting, proceed to the Unit
4 Examination.

TITLE EXPERIMENT 4 — PROGRAM 4 -- INCLUDING A SUBROUTINE

COM_PROG SEGNENT
ASSUME CS1 COM_PROG, DS1COM_PROG, 553 CON_PROG

ORG 106H
START: MOV SP,OFFSET TOP_OF_STACK jGet STACK address
HOV Cx,80 1Set number of counts
RESTART: MOV oL,’e’~1 ;Set-up number register
jwith ASCII @ minus 1
COUNT: INC 1 sMake ASCII code for number
oP 1 ;Is number above decimal range?
JA HEX_CHAR 1Yes, start hex character output
MoV AH,2 sOutput character interrupt function
INT 21H sFunction requesting interrupt
CALL DELAY tDelay one second between numbers
LOOP COUNT jRepeat if necessary
HEX_CHAR:
nov DL,’A’-1 jSet-up number register for hex values
COUNT_HEX:
INC DL sHake ASCII code for number
e oL, ’F’ ;Is number above hex range?
JA RESTART jYes, restore decimal number register
MoV AH, 2 1O0utput character interrupt function
INT 21H jFunction requesting interrupt
CALL DELAY sDelay one second between numbers
LooP COUNT_HEX jRepeat hex count if necessary
MoV AH, @ sEnd program interrupt function
INT 21H sFunction requesting interrupt
[
INCLUDE DELAY.INC j1-second time delay subroutine
¥
1] 166H DUP (2) sSTACK size defined
TOP_OF_STACK LABEL WORD s1dentify top of STACK
i
COM_PROG ENDS
END START

Figure 4-22
Program using an include file.

subroutes | 4-59

UNIT 4 EXAMINATION

The stack used in an 8088-based microcomputer is:

The Stack Pointer is decremented twice after a word of data is
pushed into the stack.

True/False

The contents of the register are
pushed into the stack when a subroutine is called.

The PUSHF instruction has the MPU store:

A. Bytes of data.

B. Words of data.

C. Flagregister data.

D. General register data.

Execution of the return instruction at the end of a subroutine
causes the MPU to:

The top of stack location in memory is usually identified with
the assembler directive

The INCLUDE assembler directive lets you combine two COM
files during program assembly.

True/False

When the instruction MOV AX,OFFSET STORAGE is executed:

4-60 | unirFour

EXAMINATION ANSWERS

The stack used in an 8088-based microcomputer is a group of
temporary storage locations in memory, usually located after the
program code and data.

False. The Stack Pointer is decremented twice before a word of
data is pushed into the stack.

The contents of the Instruction Pointer register are pushed into
the stack when a subroutine is called.

C — The PUSHF instruction has the MPU store Flag register data.

Execution of the return instruction at the end of a subroutine
causes the MPU to pop the word of data at the top of stack into
the Instruction Pointer, increment the Stack Pointer by two, and
execute the instruction pointed to by the contents of the Instruc-
tion Pointer.

The top of stack location in memory is usually identified with
the assembler directive LABEL.

False. The INCLUDE assembler directive lets you combine two
ASM files during program assembly.

When the instruction MOV AX,OFFSET STORAGE is executed,
the offset address value of the name STORAGE is moved into
the AX register.

Subroutines 4'61

10.

11.

12.

13.

SELF-REVIEW ANSWERS

A subroutine is a step-by-step procedure for doing a particular
job.

False. A subroutine can be used an unlimited number of times.
A subroutine is called with the CALL instruction.

The last instruction in a subroutine is the RET (return) instruc-
tion.

The Trapezoid-shaped box in a flowchart represents an input/out-
put process.

The small circle in a flowchart represents a change in program
direction.

The 8088 MPU stack uses the LIFO principle of data storage.

False. The location of the stack has no bearing on the ease of
data transfer.

The Stack Segment register contains the stack base address.
The Stack Pointer register contains the stack offset address.
The PUSH instruction is used to move data directly into the stack.

To remove data from the stack, you would use the POP instruc-
tion.

The PUSHF instruction is used to store the contents of the Flag
register in the stack.

4'62 UNIT FOUR

14.

15.

16‘

17,

18.

19.

20.

21.

22.

23.

24.

The POPF instruction is used to move a 16-bit value from the
stack into the Flag register.

False. Only word-sized values can be saved in the stack.

True. The PUSH instruction decrements the SP by two and then
stores the data at addresses SP and SP+ 1.

False. The POPF instruction first retrieves the data at addresses
SP and SP + 1; then it increments the SP by two.

True. You can pop more data from the stack than you pushed.
However, that additional data will be of an unknown quantity.

The assembler directive LABEL identifies an offset address loca-
tion with a name.

The assembler operator OFFSET causes the assembler to calculate
the offset address of a name.

True. The CALL instruction decrements the Stack Pointer by two
and then stores the return address at addresses SP and SP + 1.

The RET instruction causes a change in program direction by
moving an address into the Instruction Pointer register.

True. The target address for a return instruction is always at the
top of the stack. If it is not, the MPU will not return to the correct
location in the main program.

In order to bypass four words of data in a stack, the return im-
mediate instruction must contain the immediate value eight.

Subroutines 4'63

25.

26,

27.

28,

29.

30.

False. A CALL instruction can not be used to access more than
one subroutine in a program, since its destination operand con-
tains the address of the subroutine being called.

True. A RET instruction at the end of a subroutine can cause
the MPU to jump to any part of the program and begin execution,
since the return address is located in the program stack.

The assembler directive INCLUDE is used to combine source code
files to produce one file.

False. The file name TIME.OB] is not considered a valid name
for a routine to be combined with another file or program. The
file extension OB]J should be used only with “object files.”

False. When combining files, each include file must not contain
a SEGMENT and an ENDS assembler directive. Only the main

program should contain these directives.

Every include file should contain comments covering four subject
areas. These subject areas are:

A. Identify the routine and its function.

B. Identify any data from the main program that is needed for
the routine to function properly.

C. Identify any data that must be returned to the main program.

D. Identify any registers that are modified by the routine.

LAASNI

Unit 5

NEW ADDRESSING
MODES

5"2 UNIT FIVE

CONTENTS
IRERANCHOR ».c s sonn soasmm wsmows s s swamen e wwe o SR &omm & e 5-3
CRIE OBV iovs wus o5 vars o0 oo e v s sem N @5 vass s 5-4
LI AN TG « i2onr vopian b i manamsa stman v mas:d S 5-5
DIAEA: STOPAGE .o wooiswn wemen caime v s smmion Konsass %6 mn Lok 5-6
SIDEHUTEE ¢ v 30 vl cvsas BeWEs OOV SRR NYEDE I BARE Sas 5-12
RPCOPAB. 76 vmie o' 56 v bomd Saikes a0 6% SReR 15085 S5 050 60 S0 5-23
Register Indirect Addressingcoiviiiiniienennnn. 5-35
EXPetimment ..ocen wun e svias et e i v b5 W e 5-50
Unit 5 Bxapimation: ;. icesa bawsb a8 0d e naims ok 5o sais 5-70
Examination ANSWOIS ... cscovnseooss sonsss S o e s 5-72

Solf-RovioW ADSWELS . cviwn oo sae viansi sosits o iim s s ooisas i 5-74

New Addressing Modes | 93

INTRODUCTION

The first four units used three basic forms of addressing: immediate,
register, and direct. While these were adequate for our programming
examples, they didn’t allow you to use the full potential of the MACRO-
86 instruction set. This unit will complete the addressing mode family
by introducing you to the four variations of register indirect addressing:
register indirect, based, indexed, and based index. Keep in mind that
these will be treated as intrasegment modes of addressing. That is,
addressing that is confined to a single 64K segment of memory. Unit
7 shows you how these addressing modes can be used for intersegment
addressing (accessing any location in memory).

Indirect addressing is used primarily for accessing data. This data can
take the form of display character sets, look-up tables, records, and
structures. Display character sets and look-up tables are simply strings
of ASCII codes or numeric values. Records and structures, on the other
hand, are arranged in a specific manner to allow direct access to unique
groups or elements of data. MACRO-86 has a number of assembler di-
rectives to aid you in handling this data.

Before we can describe records and structures, we must first present
a number of new methods for initializing data. This information is
covered in the section “Data Storage.” The indirect method for address-
ing data is the final topic in this unit.

Use the “Unit Objectives” that follow to evaluate your progress, When
you can successfully accomplish all of the objectives, you will have
completed this unit. You can use the “Unit Activity Guide” to keep
arecord of those sections that you have completed.

5‘4 UNIT FIVE

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

153

2.

Explain the operation of the LEA instruction.

Define the terms: array, record, structure, and field.

Define the assembler directives: define doubleword (DD), define
quadword (DQ), define ten-byte (DT), STRUC, ENDS, and REC-
ORD.

Define the assembler operator MASK.

Define a register displacement value.

Explain the use of the assembler directive brackets.

Define the four indirect addressing modes: register indirect,
based, indexed, and based index.

Write simple programs that use the indirect forms of addressing.

New Addressing Modes 5'5

UNIT ACTIVITY GUIDE

Completion
Time

Read the Section on “Data Storage.”

Complete Self-Review Questions 1-8.

Read the Section on “Structures.”

Complete Self-Review Questions 9-17.

Read the Section on “Records.”

Complete Self-Review Questions 18-25.

Read the Section on “Register Indirect Addressing.”

Complete Self-Review Questions 26-35.

Perform the Experiment.

Complete the Unit 5 Examination.

Check the Examination Answers.

5'6 UNIT FIVE

DATA STORAGE

Until now, you have assigned data storage in memory in terms of bytes
and words. To help locate the data, you gave it a name. There has
been no attempt to arrange the data in any specific manner. This unit
will show how MACRO-86 allows you to group data into two unique
forms — the RECORD and the STRUCTURE. However, before we de-
scribe these two methods of arranging data, we need to define a com-
mon term for “groups of data.” We'll call these groups “arrays.”

Arrays

Every time you define more than one byte or word of data in a program,
you create an array of data. An array is a sequence of common data
elements. Two or more defined bytes or words can constitute an array.
For example:

BYTE ARRAY1 DB 'A CHARACTER STRING' ;18-byte array
BYTE ARRAY2 DB 18 DUP (?) ;Uninitialized 18-byte array

Each of these assembler directive statements produce an array of data
bytes; one initialized with a string of ASCII character codes and the
other uninitialized. In both cases, a single directive established the
array. You can also use a group of directives to establish the array.
For example:

DATA TABLE DW ;Initializedwordofdata

1

2 ;Initializedwordof data
DW 3 ;Initializedwordofdata

4 ;Initialized wordofdata

Although only one directive in this example is identified by a name,
each directive can be addressed through that name. Simply add 2, 4,
or 6 to the target address value to address the second, third, or fourth
word of data. The important point to remember is that the first byte
in a byte-sized array, or word in a word-sized array, is located at offset
zero with respect to the array’s target address. The remaining bytes,
or words, are located at offset multiples of one, or two, into the array.
For example, to retrieve the first word in word-array DATA_TABLE,
you could use the instruction:

MOV AX,DATA_TABLE

New Addressing Modes | D=7

Then, to retrieve the third word in word-array DATA_TABLE, you could
use the instruction:

MOV AX,DATA.TABLE+4

If the first word is located at offset zero, then the second word is located
at offset two and the third word must be located at offset four.

The arrays we’ve been discussing contain bytes and words of data.
MACRO-86 provides three other methods for defining data in a pro-
gram. These are the doubleword, the quadword, and the ten-byte word
assembler directives.

5'8 UNIT FIVE

More Data Definition

As you begin writing more complex programs, you will discover the
need to assign large values to a specific memory location. While the
DB and DW assembler directives will satisfy most of your needs, there
will be times when they just won’t work. MACRO-86 provides three
define data directives that will satisfy those specific needs. They are:
define doubleword (DD), define quadword (DQ), and define ten-byte
(DT). Each lets you define and initialize different data sizes. As their
names imply, DD defines values up to two words in length, DQ defines
values up to four words in length, and DT defines values up to ten
bytes in length. When you try to access this data, both the DD and
DQ memory locations default to word-size values. Although DT is de-
fined as a 10-byte memory location, it also defaults to word-sized values
when accessed for a move data operation. Both the DQ and DT direc-
tives are specifically designed to handle large numbers for the 8087
Numeric Data Processor when it is used with the 8088/8086 MPU. You
can use these directives to assign data even if you aren’t using the
8087. However, we recommend that you stick with DB, DW, and DD.

Figure 5-1 is a portion of an assembler listing showing how these define
data assembler directives can be used. The DB and DW directives are
included to let you compare each of the define directives.

45 @193 o1 DEF INE_BYTE DB 1

45 @194 12 DEFINE_BYTE! DB 12H

47 0195 @001 DEFINE_WORD DH 1

48 9197 1234 DEF INE_WORD1 oW 1234H

49 2199 @1 @0 00 00 DOUBLE_WORD DD 1

50 919D 78 56 34 12 DOUBLE_WORD1 DD 12345678H

51 01A1 @1 @0 00 00 20 00 QUAD_WORD ba 1

52 ©0 00

53 ©1A9 EF CD AB 98 78 56 GUAD_WORD1 be 12345467890ABCDE
FH

54 34 12

S5 91Bl @0 00 00 90 90 Vo TEN_BYTE DT 1

36 %0 00 09 01

°7 @1BB 00 92 00 00 00 11 TEN_BYTE1 DT 1112131415

53 12 13 14 15

59 @1C5 00 11 12 13 14 15 TEN_BYTEZ DT 111213141516171
819

-] 16 17 18 19

&1 OICF 02 12 13 14 15 16 TEN_BYTE3 DT 111213141516171
81910

EF P oip == 29:Division by © or overflow

62 17 18 19 1@
Figure 5-1

Examples of the five define directives.

New Addressing Modes 5'9

Earlier, you discovered that the listing for data defined by the DW direc-
tive did not match the way the data was stored in memory. It really
didn’t matter since you were dealing with only two bytes of data. How-
ever, you should realize most major programs, like MACRO-86, contain
a few minor problems, or bugs. This is one of those bugs; the data
should be listed in the order it will be stored in memory.

On the other hand, the MACRO-86 listing for a doubleword and a quad-
word properly present the data in the order in which it is stored in
memory, with the least significant byte first. Where the defined data
doesn’t fill all of the reserved memory space, the most significant mem-
ory locations are filled with zeros. This is illustrated on lines 49 and
51 of the figure.

The define ten-byte directive is designed to allow you to load decimal
values directly into memory. As you know, the assembler automatically
converts any decimal value into hexadecimal to conserve memory
space. However, when a decimal value is used with the DT directive,
it is not converted into hexadecimal, it remains a decimal. As a result,
decimal data is loaded into memory two digits per byte. Naturally,
the define ten-byte directive will store ten byte-sized, decimal values.
Lines 55 through 60 show that for values less than ten bytes long, the
unused byte locations are always filled with zeros. The lines also show
that the least significant digit of the decimal value is stored in the
last byte. Line 61 shows that there is a bug in MACRO-86. It will not
store a decimal value that contains 19 or 20 decimal digits. To attempt
such an operation will generate an assembly error. This is true for all
known versions of MACRO-86. You should be aware of one more prob-
lem. After MACRO-86 version 1.10, the data is stored in reverse of
the earlier versions. For example, with version 1.10 the value
1112131415 is arranged and later stored in memory in the order:

00 00 00 00 00 11 12 13 14 15

With version 1.25 the value 1112131415 is arranged and later stored
in memory in the order:

15 14 13 12 11 00 00 00 00 0O

Because of this difference between versions, we suggest you use the
DT directive cautiously.

5'1 0 UNIT FIVE

These five data directives give you the power to construct data arrays
to fit any programming need. You will find, however, that the DB,
DW, and DD directives are used more often than DQ and DT. In fact,
the primary purpose for DQ and DT is data transfer between the MPU
and the 8087 Numeric Data Processor. Since this course isn't covering
the interface between the MPU and the 8087, we won’t use the DQ
and DT directives in our programming examples.

This section has completed the description of all of the MACRO-86
data definition instructions. It has also laid the ground work for group-
ing data, in this case, in the form of arrays of common data elements.
The next section will carry this concept a step further and show you
how MACRO-86 can be used to structure data into arrays of uncommon
data elements. But first, let’s review the concepts presented in this
section.

New Addressing Modes 5'1 1

Self-Review Questions

1. The assembler directive al-
lows you to assign two words of data to memory.

2. A/An ________ is a group of two or more common data ele-
ments.
3. The assembler directive creates

what could be considered a 10-byte array of data.

4. The assembler directive allows
you to assign four words of data to memory.

5. Indicate, after each of the following assembler directives, the data
width (byte or word) assumed by MACRO-86.

DB ___
DW
BD .
DQ
DT

6. Write the instruction that will move the contents of the AL regis-
ter into the third byte of the array named DATA BYTE.

7. Write the instruction that will move the contents of the BX regis-
ter into the fourth word of the array named DATA_WORD.

8. Write the instruction that will move the first byte of data in mem-
ory, initialized by the assembler directive statement:

TEN.BYTE DT 1234567890H

into the AL register.

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 5-74.

5'1 2 UNIT FIVE

STRUCTURES

A structure is a group of data bytes and/or words that are arranged
in a specific manner. The structure is further broken down into data
elements called fields. By assigning unique data elements to each field,
that data is easily accessed during program run-time. The real power
of this type of data handling in MACRO-86 is that it is designed to
work with an array of common data structures. To initialize a data
structure or an array of data structures, you must first design the struc-
ture template.

Structure Template

The structure template is a form of “blueprint.” It shows the assembler
how the related structures in a program are to be generated when the
program is assembled. Figure 5-2 is an example of a typical structure
template. The STRUC (structure) and ENDS (end structure) directive
statements define the beginning and end of the structure template. The
structure must have a unique name. In this example, we’ve called the
structure STRUCTURE_NAME.

Each field in the structure must also be identified by a unique name.
To keep things simple, we’ve called the five fields FIELD_1 through
FIELD.5. The size of each field can be defined with either the DB,
DW, or DD directives. The data within each field is defined in the
structure template. Later, when the program structure is initialized,
the data for that particular structure can be changed, or overridden,
to meet specific requirements in the program. There is one constraint;
if the field contains more than one data element, the data can only
be defined in the template. This means that the data in FIELD_3 and
in FIELD_4 must be specified in the template; it cannot be changed
when a structure is initialized. Naturally, during program run-time,
data can be moved into and out of any structure field.

STRUCTURE_NAME STRUC

FIELD_1 ™ ?

FIELD_2 DB)

FIELD 3 DB 78,4

FIELD_4 D 3 DUP (12345678H)
FIELD_S DB '2/28/84’

STRUCTURE_NAME ENDS

Figure 5-2
Typical structure template.

New Addressing Modes 5'1 3

Structure Initialization

Once the structure template is constructed, any number of structures
can be initialized from that template. The initialization command takes
the form:

[name] [structure-name] <[expl],...]>
where:
[name]
is the name you have assigned to the structure being initialized,

[structure-name]

identifies the structure template being used to initialize the structure,
and

<[expll,...]>

specifies a (possibly empty) list of field-initialization or optional field-
override values. The angle brackets identify the structure fields, while
commas are used to separate the fields. The fields default to the order
they were defined. For example:

s means retain the originally defined values.

<5> means override the first field value with 5.

<5,5> means override the first and second field values with 5.
<,5> means override the second field value with 5.

<,,5> means override the third field value with 5.

<5,,5> means override the first and third field values with 5.
<,5,5> means override the second and third field values with 5.

Each of these examples suggest the existence of one, two, or three fields
in the structure. However, there could have been more. Any field fol-
lowing those enclosed by the angle brackets are assumed to be un-
changed. Thus, each of the examples could have referred to a structure
containing four or more fields.

5-14 | uniteve

The term:

[exp]

represents a constant, a string, or the indeterminate character “?”, used
to define a field in the structure template.

Only simple fields can be overridden. A simple field can be defined
with a DB, DW, or DD directive, but it cannot be a multiple expression
(a list or a DUP clause). The one exception to this restriction is the
DB character string. For example, in Figure 5-2, FIELD_1, FIELD_2, and
FIELD_5 can be overridden because they contain single expressions or
a character string; FIELD_3 and FIELD_4 cannot be overridden because
they contain multiple expressions.

Strings should only be used to override strings. If a shorter string is
used to override a longer string, any unconverted bytes are replaced
with the ASCII code for a space character (20H). Strings that are longer
than the original string are automatically truncated to the correct
number of characters.

Thus far, we’ve only talked about initializing a single structure.
MACRO-86 has the capability to duplicate a large number of identical
structures from a single template. The initialization command takes
the form:

[name] [structure-name] [exp] DUP (<[expl]l,...]>)

where the familiar DUP clause creates as many copies of the template
as specified. Thus, the term:

[exp] DUP
indicates that the structure is duplicated [exp] number of times. As

with every DUP clause, parentheses enclose the expression being dupli-
cated.

New Addressing Modes 5‘1 5

TITLE UNIT 5 -- PROGRAM 1 -~ DEFINING STRUCTURES
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, S5 COM_PROG

ORG 108H
START:
1]
STRUCTURE_NAME STRUC
FIELD_1 1} ?
FIELD 2 DB]
FIELD 3 DB 743,1
FIELD_ 4 1] 3 DUP (12345478H)
FIELD_S DB *2/28/84°

STRUCTURE_NAME ENDS

i
LARRY STRUCTURE_NAME COABCDH,’A’,,,’ 123456’
HARRY STRUCTURE_NAME 2 DUP (<, ,,,’123454789">)
;
COM_PROG ENDS

END START

Figure 5-3

Initializing a structure.

Figure 5-3 is a simple program that contains a structure template and
two structure initialization statements. Program code was left out, since
our primary concern here is the structure. When the program is assem-
bled, a structure named LARRY will be created from the template. Two
of the fields are duplicated, while the other three are changed as indi-
cated in the initialization statement. In this example: FIELD_1 will con-
tain the word 0ABCDH, FIELD_2 will contain the ASCII code for the
character “A”, and FIELD_5 will contain the ASCII code for the charac-
ter string “123456”.

The second initialization statement contains a DUP clause. Therefore,
in this example, two identical structures will be created by the assem-
bler. As you can see, only FIELD5 is changed; it is loaded with the
ASCII code for the character string “123456789”.

5-16 | uniTrive

Figure 5-4 shows the assembler source listing of our simple structure
program. Lines 7 through 17 contain the structure template. Notice that
the address offset of the template begins at 0000H and ends at 0019H.
This data is used by the assembler for reference purposes only; the
template does not become part of the program code.

The structure named LARRY begins at address offset 0100H. This struc-
ture is part of the program. Because there is no instruction code, it
resides at the beginning of the program. Notice that FIELD_5, at address
offset 0112H, contains the new character string 31H, 32H, 33H, 34H,
35H, and 36H. Because the string is one byte shorter than the template,
the last byte contains the ASCII code for the “space” character, 20H.

The structure named HARRY is duplicated twice. Because the structure
is duplicated, the assembler listing uses the standard duplication for-
mat. In this example the dupe count, 02, precedes the duplicated data
enclosed within square brackets. The only field changed in the initiali-
zation statement is FIELD_5, Again, the character string is replaced by
another character string. Only this time, the new character string is
longer than the original. As a result, the excess bytes are truncated,
beginning with the last byte entered. The string is shown on lines 37
and 38.

(CAUTION: Assembler versions 1.00 through 1.07 do not properly du-
plicate the structure. That is, the first field is duplicated count times,
but then the remaining fields are duplicated only once.)

New Addressing Modes 5‘1 7

The Microsoft MACRO Assembler 03-15-684 PAGE 1-1
UNIT 5 — PROGRAM 1 -~ DEFINING STRUCTURES

1 TITLE UNIT 5 ~ PROGRAM 1 ~- DEFINING S
TRUCTURES
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG,

g

$5:COM_PROG
0100 ORG 100H
0100 START:

i
STRUCTURE_NAME STRUC
eed0 777? FIELD_1 W ?

0 W ~No-WU

0002 00 FIELD_2 DB L
190 2003 07 03 01 FIELD_3 0B 7,3,1

1 {2 1 e3 [FIELD_4 U] 3 DUP (12345678
H)

12 78 56 34 12

13]

15 0012 32 2F 32 38 2F 38 FIELD_S DB '2/28/84°

16 34
17 0019 STRUCTURE_NAME ENDS

§
19 0186 ABCD LARRY STRUCTURE_NAME <OABCDH,’'A’,,,’
1234567 >
20 0182 41
21 0163 @7 03 o1
22 0104 e3 [
23 78 36 34 12
24]
23 0112 31 32 33 34 35 36
26 20

28 o119 02 [HARRY STRUCTURE_NAME 2 DUP ((,,,,’'12
3456789 >)

29 77

30 0

<} | o7

32 o3

33 o1

34 L

35 78 56 34 12

36]

37 31 32 33 34

38 35 36 37

39 1

49]

i
43 0148 COM_PROG ENDS
44 END START

Figure 5-4
Assembler source listing of the structure program.

5"1 8 UNIT FIVE

The Microsoft MACRO Assembler 03-15-84 PAGE Symbols
-1
UNIT 5 — PROGRAM 1 -- DEFINING STRUCTURES
STRUCTURE
INFORMATION
Structures and records:
STRUCTURE
TEMPLATE Name Width # fields
NAME \ Shift Width Mask Initial
STRUCTURE_ NAME » . » & . 019 0005
PIRLD Yoos v s 50 5 9 s 0% 5 0020 T~
FIELD2. + « o o « o o . cea 0002 NUMBER OF FIELDS
RS o o5 wis & 695 & & 54 0003 IN STRUCTURE
FIELD NAMES FIELD & . . 2 v 0 v v o 0006
OF STR R Bes 5w oww s e 6§
UCTURE FIELD S s ¥ doea 0012 NUMBER OF BYTES
STRUCTURE_NAME
Segments and groups: IN STRUCTURE (WIDTH)
OFFSET OF
FIELD INTO
STRUCTURE
Name Size align combine class
COMPROG « o« o o s 0 0 ¢ 0 0 ¢+ 014B PARA NONE
Symbo st
Name Type Value Attr
T P L 6019 0119 COM_PROG Length
=DRO2
LARRY.: o & wow a5 woa w e L 0019 0100 COM_PROG
START. = = v a0 s a0 o o 0 0 s & L NEAR 0100 COM_PROG
Warning Severe
Errors Errors
9]
Figure 5-5

Last portion of the assembler source listing shown in Figure 5-4.

Figure 5-5 is the last page of the assembler listing. It shows that along
with segments and symbols, data concerning structures and their fields
are also listed. Each structure template is identified in the “Structures
and Records” table. Following each structure template name is the
name of each field in that template. The field names are indented to
make them easier to locate.

The two values following the structure template name are the width,
or number of bytes used by the template, and the number of fields
in the template. After each field name is a value that indicates the
number of bytes each field is offset into the template. Remember, the
values used in this and in the other tables are hexadecimal, not decimal.

New Addressing Modes 5‘1 9

The actual program structures are identified in the “Symbols” table.
Reading from left to right, the structure HARRY is 19H bytes long,
it begins at address offset 0119H, it is located in the segment
COM_PROG, and it is composed of two structures (Length =0002). The
structure LARRY is also 19H bytes long, it begins at address offset
0100H, and it is also located in the segment COM_PROG. Since there
is no “Length” specified, you can assume there is a single structure
associated with the name LARRY.

After defining the structure template and initializing the program struc-
tures, the last step is to reference, or access, the individual fields of
those structures.

Structure Access

Normally, when you access a variable, you identify the location through
its name. That isn't practical with a structure, since the location is
actually referenced by two unique names — the structure name and
the field name. To resolve that problem, MACRO-86 has you combine
the two names to produce a single “structure reference” name, with
the form:

[structure name].[field name]

where [structure name] is the name of the initialized structure rather
than the name of the structure template. The [field name] is the name
of the field being accessed within that structure. A period [.) is used
to separate the names. Thus, to access the data in FIELD_2 of the struc-
ture LARRY, you could use the instruction:

MOV AL,LARRY.FIELD.2

Using the data from the structure program in Figure 5-4, you can see
that this instruction will move the ASCII code for the character “A”
into the AL register. When you access a structure field, make sure the
source and destination operand sizes match.

5'20 UNIT FIVE

Accessing data in a multiple element field requires a little more care.
If it is the first item, you can use the previous example as a guide.
For example, the instruction:

MOV AL,LARRY.FIELD.3

moves the value 7 into the AL register. To access the second or third
item in FIELD_3 you must use an arithmetic operator to provide the
additional offset into the field. For example, to move the third item
in FIELD_3 into the AL register, you would use the instruction:

MOV AL,LARRY.FIELD 3+2

With the first item in FIELD_3 located at offset zero of the field, the
third item must be located at offset two.

Accessing doubleword data also requires care on your part. Referring
back to Figure 5-4, the instruction

MOV AX,LARRY.FIELD.4

will move the value 5678H into the AX register. This is because the
DD statement stores the low-byte of the doubleword expression first,
followed by the next lowest byte, and so on. Thus, when you access
the first word, you are actually accessing the low-word in the expres-
sion. Naturally, the instruction

MOV AX,LARRY.FIELD 4+2

will move the high-word (1234H) into the AX register.

This concludes the discussion on structures. Remember, the structure
template is used to establish the basic format for the structures you
will use in the program. All of the fields can be undefined, or they
can contain specific data. When you initialize a structure — allocate
memory space to that structure — you can leave the fields unchanged,
or you can modify their contents. Often, the final contents of a structure
are determined at program run-time.

New Addressing Modes 5‘21

Self-Review Questions

10.

11,

12

A is a group of data bytes and/or words that
are arranged in a specific manner.

The data elements of a structure are called

The beginning of a structure template is identified by the directive
statement

The end of a structure template is identified by the directive state-
ment

Refer to Figure 5-6 for the following questions.

13.

14.

15.

TE¥® STRUC
F1 DB '93/05/84’
F2 oD 1290H
F3 DW ?
F4 DB 24,33,85,12
FS Dw 5 DUP (?)
TENP ENDS

Figure 5-6

Figure for questions 13 through 17.

fields.

The structure template contains

List the name of each field that can be overridden.

Write a structure initialization statement named APPLE that du-
plicates the template.

5'22 _ UNIT FIVE

16.

17.

Write a structure initialization statement named PEAR that dupli-
cates the template three times and changes the contents of the
third field to 0OABCDH.

Write the instructions that will move the ASCII code for the day
from the structure PEAR into the AX register, assuming the first
field contains the character string for the month, day, and year.

New Addressing Modes 5'23

RECORDS

The last section showed you how to create structures of data bytes
and words. Records are similar in concept to structures. However,
rather than being an arrangement, or pattern, of bytes and words, a
record is an arrangement, or pattern, of bits within a byte or word.
Like the structure, a record is made up of fields. Each field contains
one or more data bits. The total number of field bits cannot exceed
eight for a byte-sized record or 16 for a word-sized record. To initialize
a record or an array of similar records, you must first design the record
template.

Record Template

The record template shows the assembler how the related records in
a program are to be generated when the program is assembled. A record
template takes the form:

[record-name] RECORD [[field-name]:[width]] = exp]][,...]
where:

[record-name]
is the name assigned to the record template,

RECORD
is the assembler directive that establishes the template,

[field-name]
is a unique name that identifies a field in the record, and

:[width]
indicates the number of bits in the field. It must be a constant in the
range of 1 to 16. The sum of the field-name widths must fall within
the range of 1 to 16. If the sum is 8 or less, a byte-sized record is
defined. If the sum is between 9 and 16, a word-sized record is defined.

It's possible to have a record that contains up to 16 single-bit fields.
The colon must be used to separate the field-name from its width.

5-24 | uniTrive

Again, like the structure template, the record template can be used
to define the contents of a field. This is indicated by the term:

[=exp]
where exp is a default value with the following characteristics:

1. It can be retained or overridden when the record is in-
itialized.

2. If no default value is specified, zero is used.

3. If specified, the default value evaluates to a positive in-
teger expressible in the number of bits defined by the
field. For example, a field three bits wide can hold the
value 7 (111B), but not 8 (1000B).

4. If the field is exactly eight bits wide, it may be initialized
to a single ASCII character as in:

FIELD.C:B="A"
Now let’s look at a simple record template containing no defined data.
CHIPS RECORD RAM:7,EPROM:4,ROM:5

The record template CHIPS contains three fields: RAM, EPROM, and
ROM. When the template is used to initialize a record, the fields will
have the following characteristics:

Field Name Field Width Bit Positions | Maximum Value

RAM 7 15-9 27—-1=127

EPROM 4 8-5 2¢4-1=15

ROM 5 4-0 25-1=31

New Addressing Modes 5'25

The “Bit Positions” column indicates where the field resides within
the record, with 0 the least significant bit. The “Maximum Value” col-
umn indicates the largest value that can be stored within a field. Since
“Field Width” indicates the number of binary bits in the field, that
value becomes the exponent in the formula to determine the maximum
field value. One is subtracted from the total because the maximum
value is always one less than the maximum binary count.

The record template CHIPS contained no defined values. Adding de-
fined values to the template will produce a record template similar
to CHIPS2.

CHIPS2 RECORD RAMR2:7=4,EPROM2:4=2,ROM2:5=25

In this template, the field RAM2 is seven bits wide and it contains
the value 4; the field EPROM2 is four bits wide and it contains the
value 2; and the field ROM2 is five bits wide and it contains the value
25.

Earlier, we said the record could contain anywhere from 1 to 16 bits.
While it is always a good idea to use records that are 8 or 16 bits
long, they can be shorter. For example, the record template:

CHIPS3 RECORD RAM3:7=4,EPROM3:4=2

contains two fields with a total bit count of 11. The five unused bits
are considered undefined. Thus, CHIPS3 is considered an 11-bit record
template. Fields are always right justified in the template; therefore,
EPROMS3 occupies bit positions 0 through 3, RAM3 occupies bit posi-
tions 4 through 10, and the undefined bits occupy positions 11 through
15.

Field bits that are not assigned a value in the record template are auto-
matically given the value zero when the program is assembled. Unused
bits are also zeroed by the assembler.

5'26 | UNIT FIVE

Record Initialization

Once the record template is constructed, any number of records can
be initialized from that template. The initialization command takes the
form:

[name] [record-name] <[expl][,...]>

where:
[pame]

is the name you have assigned to the record being initialized,
[record-name]

identifies the record template being used to initialize the structure,
and

<[expll,...]>

specifies a (possibly empty) list of field-initialization or optional field-
override values. The angle brackets identify the record fields, while
commas are used to separate the fields. The fields default to the order
they were defined in the template. This is handled in exactly the same
manner as described for structure fields. Just make sure the expression
values will fit into the specified field bit patterns.

Initializing a large number of identical records from a single template
also follows the method described for multiple structures. The initiali-
zation command takes the form:

[name] [record-name] [exp] DUP (<[exp],...]>)
where the DUP clause creates as many copies of the template as

specified. Again, parentheses enclose the field expression being dupli-
cated.

New Addressing Modes 5'27

TITLE UNIT 5 -- PROGRAM 2 — DEFINING RECORDS
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, SS: COM_PROG
ORG 100H
START:

I'ECERD_MI'E RECORD FIELD_1:5=25,FI1ELD_2:4=7,FIELD_3:5=10,FIELD 4:2

g
TEMPLATEL RECORD_NAME <,,,3>

DATA_WORD DM oCBABH
TEMPLATE2 RECORD_NAME 3 DUP (<31,0,253)
COM_PROG ENDS
END START
Figure 5-8

Initializing a record.

Figure 5-8 is a simple program that contains a record template and
two record initialization statements. Program code was left out, since
our primary concern here is the record. The record template contains
four fields. The first three contain defined values; the fourth is unde-
fined. When the program is assembled, two records are created. The
first is called TEMPLATEZ1. Its first three fields are a duplicate of the
template RECORD_NAME, the fourth is initialized with the value three.
When the record TEMPLATE1 is created, you can expect the word
of data to contain the value 0CBABH. This is determined by combining
the individual field bit values as shown in Figure 5-9.

FIELD_1 FIELD.2 FIELD_3 FIELD_4
1%\ 01010 11
BINARY VALUE 1100101110101011

HEXADECIMAL VALUE CBAB

Figure 5-9
Determining the value of record TEMPLATE1.

5'28 UNIT FIVE

The second record is called TEMPLATE2. It contains a DUP clause.
Therefore, in this example, three identical records will be created by
the assembler. Notice that the first three fields are overridden with
new values; the fourth field is left out of the expression, and by default
is not changed. This record should contain the value 0F864H when
it is created.

The Microsoft MACRO Assembler 03-14-84 PAGE i-1
UNIT 5 -— PROGRAM 2 — DEFINING RECORDS

1 TITLE UNIT 5 -- PROGRAM 2 —— DEFINING R
ECORDS
2 o0 COM_PROG SEGMENT
3 ASSUME CS:COM_PROG, DS:COM_PROG,
55: COM_PROG
4 0100 ORG 1004
5 0109 START:
6 .
1
7 RECORD_NAME RECORD FIELD 1:5=25,F]
. ELD_214=7,FIELD_315=19,FIELD_4:2
i
9 0100 AB CB TEMPLATEY RECORD_NAME <,,,3>
10 9102 CBAB DATA_WORD D OCBABH
11 0104 03 [TEMPLATE2 RECORD_NAME 3DUP(
<31,9,25))
12 64 F8
13]
14
15 i
16 0104 COM_PROG ENDS
17 END START
Figure 5-10

Assembler source listing of the record program.

Figure 5-10 shows the first part of the assembler source listing of our
simple record program. Line 7 is the record template. Unlike the struc-
ture template, the record template has no offset address reference, and
the field contents are not identified in the data column of the listing.

New Addressing Modes | 529

Record TEMPLATE1 contains the value 0CBABH. Notice that the value
is listed in the data column just as it will be loaded into memory,
low-byte first. We included a DW directive with the same value to
show you that the assembler listing for a word-sized record is not pre-
sented in the same manner as a define word directive. This is to remind
you that you should not interpret the listed data for the two word values
in the same manner. The record named TEMPLATE?2 is duplicated three
times. Again, the assembler listing uses the standard duplication for-
mat. In this example the dup count, 03, precedes the duplicated data
enclosed by square brackets. The value of the record is 0F864H.

Accessing Record Data

Accessing a record is no different than accessing any other named vari-
able in a program. Data can be moved into a record from any 8- or
16-bit general register as long as the register and record sizes (byte
or word) match. By the same token, record data can be moved into
any 8- or 16-bit general register. However, we recommend that you
do not use the CL or CX registers in this operation. You’ll see why
shortly.

If record data is treated no differently than any other variable, why
bother creating the record in the first place? Records let you pack a
lot of information into a small area. Many microcomputer operations
require 1- or 2-bit codes to control the process. Rather than waste mem-
ory space and add to the complexity of the program with bytes of data
containing these simple codes, MACRO-86 gives you the record. With
the record, many codes can be stored within a byte or word of data.
Accessing that code is the trick!

5-30 | unTrive

Suppose you wanted to access the code in record TEMPLATE1, field
FIELD_3 of our simple record program. The first step is to move the
contents of the record into a register. We’ll use the instruction:

MOV DX, TEMPLATEl

The DX register now contains the value 0OCBABH. In binary, the indi-
vidual fields contain the value:

11001 0111 01010 11

The next step is to mask the unwanted fields; that is, zero all the field
bits except those in FIELD_3. Normally, this is accomplished by ANDing
the register contents with a value that contains zeros in all of the mask-
bit positions, and ones in all of the bit positions that must be preserved.
Now you could calculate the value each time you wished to read a
record field, or you could let MACRO-86 do the work for you.

When MACRO-86 assembles a program that contains a record, it uses
the template to determine the location of every field in that record.
With that data, the assembler sets-up a table that shows the bit-count
from the least significant bit of the record to the beginning of each
field. The table also contains the value that can be used to mask any
field in the record. Now, when the assembler encounters an instruction
that contains the operator MASK followed by a field name, the assem-
bler substitutes the appropriate mask value from the table.

Therefore, to mask the unwanted fields from the record in the DX regis-
ter, you would use the instruction:

AND DX ,MASKFIELD.3

New Addressing Modes 5'31

The mnemonic AND performs the same operation as the assembler
operator AND, only it does it during program run-time rather than when
the program is assembled. This is important, since we are dealing with
a variable that can change while the program is running. Thus, the
contents of register DX are ANDed with the mask for FIELD.3, and
the result is stored in DX. The mask for FIELD_3 is 007CH. In binary,
the bit field arrangement is:

00000 0000 11111 00

After the AND operation, the DX register contains the value 0028H.
Arranging the binary value by field, the register contains:

00000 0000 01010 0O

The last step in the operation is to shift the contents of the field into
the low-order bits of the register. Here you need to know the offset
of the field into the record. Recall that the field offset is one of the
items calculated by the assembler and stored in its record table. You
can retrieve that value with the instruction:

MOV CL,FIELD.3

The assembler knows that when it is asked to move a field name into
the CL register, it is supposed to move the field offset value into the
CL register. That’'s why we said earlier that you shouldn’t use the CL
or CX register to handle record data. Since the field offset value is
the number of bits the field is shifted left of the least significant bit
in the record, we should be able to use the value as a shift count.

(Caution: IBM MACRQO-86 version 1.00 will cause an assembly phase
error if you use the “MOV CL,[field-name]” instruction.)

Naturally, you can’t use the assembler operator SHR (shift right), since
the shift operation must be performed during program run-time. There
is, however, an instruction mnemonic called Shift Logical Right (SHR).
It shifts the contents of the indicated register the number of bits right
specified by the CL register. As the low-order bits are shifted out of
the register, they are lost. At the same time, the empty high-order bits
are filled with zeros. Therefore, to shift the contents of field FIELD_3
into the low-order bits of the DX register, use the instruction:

SHR DX,CL

5-32 | unrrive

RECORD

The DX register ends-up with the value 000AH — the original contents

of field FIELD_3.

We made a number of references to a record table in the previous dis-
cussion. While the assembler has direct access to the table during the
assembly process, you can also see the table in the assembler source
listing. Figure 5-11 is the last part of the assembler listing for the record
program. Each record template is identified in the “Structures and Re-
cords” table. Following each record template name is the name of each
field in that template. The field names are indented to make them easier

to locate.

The Microsoft MACRO Assembler 03-16-84
-1
UNIT 5 —— PROGRAM 2 -- DEFINING RECORDS

Struct ¢ records: oonD
ructyres and recordas: INFORMATION

L Width # fields

TEMPLATE Name
NAME \ Shift Width

FIELD NAMES
OF RECORD
RECORD_NAME

RECORD NAME. . . . + v v v + & & 0010 0004
FYELD Lo o s v o atie o i . 000B 0005
FIELD 2. . . & v v v v v a v o 0007 0004
FIELD:S,: o 5 5w o 9's 5 & 0ia 0002 0905
FIELD 4. s ¢ s v 4 « & 0000 0002

Segments and groupst:

Name Size align

COMPROG i % © R e @10A PARA

Symbols:

Name Type Value

DATAWORD. . . = v v 4 o s o« 4 & L WORD @102

START. « « v & « & “c v e s oas L NEAR 0100

TEMPLATEL. v 4 ¢ o v L WORD @100

TEMPLATEZ, & i v o 6 2 o v o a s L WORD 0104

=003

Warning Severe

Errors Errors

9 L

Figure 5-11

PAGE

Mask

Faée
e78¢
07C
0003

Symbols

RECORD FIELD
INFORMATION

Initial

C8o0
0380
0028
0000

combine class

NONE

Attr

COM_PROG
COM_PROG
COM_PROG
COM_PROG Length

Last portion of the assembler source listing of the record program.

New Addressing Modes 5"33

The two values following the record template name are the width, or
number of bits used by the template, and the number of fields in the
template. After each field name are four columns of values that are
used to identify that field. The first is the shift value. This is the offset
of each field into the record. Notice the FIELD_4 has no shift value — it
is the first field in the record. The second column contains the width
value. This is the number of bits in the field. FIELD_3 contains five
data bits. The third column contains the field mask value. Recall that
the mask is a collection of ones and zeros that can be ANDed with
the record to isolate a particular field. The last column contains the
initial contents of the field. Notice that the value is presented as a
bit pattern rather than an absolute value. Recall that field FIELD_3 con-
tains the initial value 10, or 0AH. The bit pattern in the “Initial” column
for field FIELD_3 is:

0000000000101000
Separate the pattern into fields:
00000 0000 01010 00

and you can see that the initial value for field FIELD_3 is indeed 10,
or 0AH. Because field FIELD_4 contained no initial value in the record
template, its “Initial” column value is zero.

The actual program records are identified in the “Symbols” table. Read-
ing from left to right, the record TEMPLATE2 is a word-sized value,
it begins at address offset 0104H, it is located in the segment
COM_PROG, and it is composed of three records (Length =0003). The
record TEMPLATE1 is also a word-sized value, it begins at address
offset 0100H, and it is also located in the segment COM_PROG. Since
there is no “Length” specified, you can assume there is a single record
associated with the name TEMPLATE1.

This concludes the discussion on records. Remember, the record
template is used to establish the basic bit pattern for the records you
will use in the program. All of the fields can remain undefined, or
they can contain specific data. When you initialize a record — allocate
memory space to that record — you can leave the fields unchanged,
or you can modify their contents. If you modify a field, make sure
the value will fit within the field.

5"34 | UNIT FIVE

Self-Review Questions

18.

19.

20.

A _______ is a collection of data bits that are arranged in
byte or word groups.

The small groups of data bits in a record are called

The assembler directive ___________ identifies the template for
a program record.

Refer to Figure 5-12 for the following questions.

21.

22,

23.

24.

25.

The record template is named

Record RECORD1 contains the value

Record RECORD3 contains the value

The mask for field F4 is the value

The contents of the DX register after the SHR instruction is exe-
cuted is

TITLE UNIT 5 — PROGRAM 3 -— RECORD REVIEW

COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG
ORG 100H

START:

DX, RECORD2

DX, MASK F4

CL,F4

DXx,CL

$282

3
TEMPLATE RECORD F1:3=7,F2:4,F3:5=25,F4:2

RECORD1 TEMPLATE o
RECORD2 TEMPLATE ¢ OFH, , 3>
RECORD3 TEMPLATE $ong?

COM_PROG ENDS
END START

Figure 5-12
Figure for questions 21 through 25.

New Addressing Modes 5"35

REGISTER INDIRECT ADDRESSING

Earlier in the course we indicated that the 8088 MPU had three specific
addressing modes: immediate addressing, register addressing, and di-
rect memory addressing. With immediate addressing, the constant data
is contained within the instruction operand. In register addressing, the
source and destination operands are found within the MPU. With direct
memory addressing, the effective, or offset, address of the source or
destination is calculated from a target label or name in the source code.
This section introduces a variation of these addressing schemes called
register indirect addressing.

Register indirect addressing is a form of memory addressing that uses
an MPU register to hold the address of the target. Because an MPU
register holds the offset address value, the program can be more dynam-
ic in the way it accesses memory. To begin this description, let’s look
at how the instruction is constructed.

Instruction Format

Recall from our discussion of the 8088 MPU machine language format
that an instruction used for memory addressing generally contains an
opcode, an address mode code, an R/M (register/memory) code, and
an 8- or 16-bit displacement. This format is shown in Figure 5-14. The
displacement serves as the offset or effective address (EA) for the mem-
ory location in the direct memory addressing mode. This displacement
can be either an 8- or 16-bit value. In the indirect register addressing
mode, there is no specific displacement to be calculated by the assem-
bler.

| opcope MOD RM | DISPLA|CEmE [

Figure 5-14
Direct memory addressing format.

5-36 | uniTFivE

Figure 5-15 shows the machine language format for the register indirect
addressing instruction. The displacement value, or EA, is now located
in one of four Base or Index registers within the MPU. These include
the Base (BX) register, the Base Pointer (BP) register, the Source Index
(SI) register, and the Destination Index (DI) register. Recall that the
Base register can normally be used as a 16-bit or two 8-bit registers.
However, when it is used to hold an address, it can only be used as
a 16-bit register. Thus, the addressing form will always be “BX” and
never “BL” or "BH.” Naturally, there is no chance of error with the
other three registers, since they can never be subdivided into 8-bit regis-
ter form.

[oecooe | mor rm]

BX
or
BP
;
Sl

or
Dl

—_—]

Figure 5-15
Register indirect addressing format.

Break the instruction down into its basic parts as shown in the figure
and you find that the OPCODE specifies the operation, the MOD defines
the addressing mode, and R/M indicates the register that contains the
address displacement or EA. From a programmers point of view, a typi-
cal instruction using register indirect addressing would look something
like this:

MoV [BX], AX

This move instruction specifies that the source of the data is the Ac-
cumulator and the effective address of the destination is located in
the Base register. The brackets around BX are an assembler directive.
They indicate that this register will contain an address displacement
rather than the usual numeric value. When executed, this address dis-
placement will be used as the offset in the calculation of the physical
address.

New Addressing Modes 5'37

Using The Register Indirect
Addressing Instruction

The main advantage of using register indirect addressing is that the
address is treated as a variable. Earlier, when you used direct memory
addressing, you were limited to a fixed, or constant, address displace-
ment. Now it’s a simple matter to move some value into one of the
four Base or Index registers and come up with a new memory address.
As an example, let’s examine a simple program that uses register indi-
rect addressing to move a string (series of bytes or words) of data from
one area of memory to another. The program is listed in Figure 5-16.
To keep the program as simple as possible, assume that a block of
data is stored in memory at the location identified by the name

DATABUFFER.

TITLE UNIT 5 -- PROGRAM 4 —- REGISTER INDIRECT ADDRESSING

EN_PR‘JS SEGMENT
ASSUME CS:COM_PROG,DS:COM_PROG, S5:COM_PROG

i
ORG
START: LEA
LEA

MOV
NEXT_WORD:
MoV
cHP
Jz
MoV
ADD
ADD
LOOP
STOP: INT

DATA_BUFFER
DATA_STORE

1l
COM_PROG ENDS

1004
BX,DATA_BUFFER ;Get Effective Address of data
BP,DATA_STORE ;Get Effective Address of
jdata storage area
cX,5@ 3Set data size count
AX, [BX] 1Get word of data
AX,0 11s data zero?
STOP ;Yes, end program
[BF),AX sNo, save data
BX,2 jPoint to next word of data
BP,2 sPeint to next storage area
NEXT_WORD jRepeat maximum 50 times
3 sHalt the program and
jreturn to the Debugger
D 5@ DUP (?) ;Data source area
Dd 5@ DUP (?) j;Data storage area
START
Figure 5-16

Program illustrating register indirect addressing.

5'38 | UNIT FIVE

You will find the term buffer often associated with computers. As part
of an electrical circuit, a buffer is a form of interface between two cir-
cuits or systems. When associated with data handling, a buffer is one
or more memory or register locations that are used to temporarily store
information. We will always refer to buffer in terms of data storage.

The program begins with a new instruction, LEA (Load Effective Ad-
dress). This instruction loads the effective, or offset, address of the
target operand into the specified register. In that capacity, LEA is identi-
cal in function to the assembler operator OFFSET. However, as you
will find later, the LEA instruction has a few other features that make
it a valuable programming tool. Thus, the first instruction moves the
effective address of the name DATA BUFFER into the BX register. The
second instruction moves the effective address of the name
DATA_STORE into the BP register. These two registers will serve as
“pointers” to the source and destination memory buffers. The third
instruction establishes a loop count that determines the number of data-
words that will be transferred from one buffer to the other. In this
case, 50 words will be transferred.

With all the registers prepared, the transfer loop can begin by moving
the first word from the source buffer into the AX register. The instruc-
tion uses the register indirect addressing mode. Thus, the word of data
found at the effective address pointed to by the BX register is moved
into AX. The next instruction compares the data to zero. When zero
is encountered, the program is supposed to stop; hence the next instruc-
tion, jump on zero. As soon as the data being read into the Accumulator
becomes zero, the CMP instruction will set the Zero flag and the MPU
will jump to the target address identified by the label STOP.

As long as the data is not zero, the jump instruction is ignored and
the MPU falls through to the next instruction. This instruction also
uses the register indirect addressing mode to move the “data” to its
storage area in memory.,

New Addressing Modes 5"39

Up to this point, the program has retrieved one word of data from
the source buffer and saved it in the storage buffer. However, the EA
in the Base and Base Pointer registers still address the first data word.
To access the next word in the source buffer, the Base register is incre-
mented by two. Then, to access the next storage buffer word, the Base
Pointer register is incremented by two. Both registers are incremented
by two rather than one because the program is handling word values,
not byte values. This completes the first data acquisition cycle. The
following LOOP instruction sends the program back to the point labeled
NEXT_-WORD and the cycle repeats.

Recall that the LOOP instruction first decrements the Count register
and tests for zero before looping to the target address. Should the Count
register reach zero, the program will fall through to the next instruction,
INT 3. Thus, there are two possible conditions that can cause the pro-
gram to stop; either a data word contained the value zero, or the pro-
gram ran out of storage space in its assigned buffer.

The last part of the program is quite familiar by now. The INT 3 instruc-
tion halts the program and returns the MPU to the debugger program.
A function 0, interrupt 21H instruction would have worked just as
well, sending the MPU back to the disk operating system. The next
two assembler directives assign space to the source buffer and the desti-
nation buffer.

Now let’s look at how the addressing capabilities of register indirect
addressing can be expanded.

5'40 UNIT FIVE

Base/Index Addressing

You have learned that the Base and Index registers can be used to
indirectly address data. The displacement value in the register serves
as the offset, or effective, address for a memory read or write. The
logical extension to this form of addressing is register indirect address-
ing with an immediate displacement offset value. For example, the in-
struction

MOV AX, [BX]+5

tells the MPU to add the immediate value five to the displacement
in the Base register to determine the effective address of the source
operand. Register indirect addressing with an immediate displacement
offset value is called Based addressing, Indexed addressing, or Based
Index addressing, depending on the register(s) used to hold the primary
displacement value, Because of the unique characteristics of these indi-
rect forms of addressing, they will be treated as unique forms of register
indirect addressing.

BASED ADDRESSING

In based addressing, the effective address is determined by adding the
displacement value in either the Base or Base Pointer register to the
immediate displacement value in the instruction operand. This is
shown in Figure 5-17. Notice that the instruction displacement operand
can be either a 1- or 2-byte value. The following are typical examples
of the addressing mode:

MOV AX, [BX]+5
SUB [BP]+NUMBER,DX
ADD CX, [BP]—-OAH

| opcope | mOD RM | DISPLA|CEMENT |

BX
or +

Figure 5-17
Based addressing.

New Addressing Modes | D-41

The first instruction determines the EA (effective address) by adding
the contents of the Base register to the single-byte displacement five,
and then moves the data at that address into the Accumulator. The
second instruction can be interpreted in two ways: NUMBER equates
to a constant or NUMBER is a variable name. In the first case, the
1- or 2-byte constant is added to the displacement in the Base Pointer
register to produce the destination EA. In the second case, the offset
address of the variable name is added to the displacement in the Base
Pointer register to produce the destination EA. The last instruction gives
a new wrinkle to the addressing process. Instead of adding an im-
mediate displacement value to the register displacement, the immediate
displacement value is subtracted. Thus, when the EA is determined
for this instruction, it will be lower by ten than the original displace-
ment in the Base Pointer register.

Based addressing also provides a straightforward way to address a spe-
cific field in an array of data structures. A typical instruction is:

MOV AX, [BX].FIELD.1

where the Base register is substituted for the structure name. The
period, followed by the field name, tells the assembler that the instruc-
tion is addressing a field within a structure, and the offset address
of the structure is in the Base register. Taking this idea one step further,
it's now a simple matter to update the contents of the Base register
to point to any structure during program run-time. For example, sup-
pose you wanted to compare the third field of every structure in a
program to a value, and then save the address of every field that con-
tained a different value. Figure 5- 18 is a listing of that program.

5'42 UNIT FIVE

TITLE UNIT 5 — PROGRAM 5 -~ BASED ADDRESSING
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, S5: COM_PROG

¥
COUNT EQU
LOOK EQU
i
ORG
START: LEA
LEA
MOV
KoV
TEST: MOV
CHP
JZ
LEA
MoV
ADD
OKAY: ADD
LOoP
INT
1
0bD Dil
4
TABLE STRUC
NAME DB
DATE DB
STATUS DB
VAC DB
RATE Dh
DEPT Di
DIV DB
TABLE ENDS
L]
PERSON TABLE
1
COM_PROG ENDS
END

160
?HJ

100H
BX, PERSON
BP,0DD

CX, COUNT

AL, LOOK

AH, [BX].STATUS
AL, AH

OKAY

DX, [BX1.STATUS
(BP1, DX

BP,2

BX, 30

TEST

3

COUNT DUP (@)

'LARSEN LP
'@3-13-84"
JHJ

15

10000

438

18

COUNT DUP (<))

START

sNumber of structures
jCharacter being compared

;Get address of first structure
:Get address of storage area
sLoad counter

sGet character to compare

;Get field character

;Do characters match?

;Yes, field okay

;No, get address of bad field
;Save address

jPoint to next storage address
;Point to next structure

;Get next character until done
sReturn to debugger command

sBad character storage area

* 315 character string
38 character string
;Single character string
jData byte

sData word

sData word

sData byte

sArray of structures

Figure 5-18
Program to test the contents of a structure field.

New Addressing Modes 5'43

The structure template in the program is called TABLE, and the third
field in the template is called STATUS. The statement named PERSON
initializes an array of 100 structures. Because the structure “count”
is repeated in the program, an equate statement called COUNT is used
to establish the value. This way we can always be sure that, if we
change the count, every occurrence of that count is changed.

The define word statement named ODD initializes 100 words of mem-
ory with the value zero. This area is used to store the EA of every
field that doesn’t match the character in the equate statement LOOK.

The program begins by setting up four registers to handle the character
test operation. First, the effective address of the first structure in the
array of structures is loaded into the Base register. Then the Base Pointer
register is loaded with the EA of defined word array ODD. Next, the
program loop counter is loaded with the structure “count.” Finally,
the AL register is loaded with the character to be compared with each
structure field.

The test begins by moving the contents of the first field into the AH
register. Here, the Based addressing mode is used to access the field
named STATUS. When the program is assembled, the term “.STATUS”
is translated into a constant displacement. (This becomes an immediate
value in the instruction.) Then, when the instruction is executed by
the MPU, the contents of the Base register are added to that constant
to produce the EA of the structure field.

The field value is compared with the ASCII code for the character “M”.
If there is a match, the Zero flag is set; otherwise, the flag is cleared.
The jump if zero instruction then determines the flow of the program.
A match causes the MPU to execute the jump and bypass the next
three instructions. Let’s assume there is no match and the jump is ig-
nored.

The next instruction loads the EA of the field with the odd character
into the DX register. This is another form of Based addressing. However,
instead of moving the data pointed to by the EA, it’s the EA that is
moved into the register. Then the EA is stored in memory by the next
instruction. Here, the register indirect form of addressing is used to
move the contents of the DX register into the memory location pointed
to by the contents of the Base Pointer register. Finally, the Base Pointer
register is incremented by two to point to the next storage location
in memory.

5'44 UNIT FIVE

That completes the test loop. All that’s left is to point the Base register
to the next structure in the array by adding 30 (the number of bytes
in the structure) to the register. Now the loop instruction can send
the MPU back to the beginning of the loop. To keep everything tidy,
an INT 3 instruction is used to end the program after the last loop.

You may have noticed that the program will never store the EA of
an odd field character. That is because all of the structures contain
the correct character. Normally, a test routine of this nature would be
working on an array of structures that contain different data. To keep
the program simple, we duplicated just one structure.

INDEXED ADDRESSING

Indexed addressing operates just like Based addressing, except that the
register involved in the operation is either the Source Index or the
Destination Index register. This is shown in Figure 5-19. Because of
the similarities, you can think of Based and Indexed addressing as being
the same — indirect register addressing with an immediate displace-
ment value in the instruction. The names are different to distinguish
between the registers used in the instruction. This is important when
you are dealing with the Based Index form of addressing.

[opcode | mob Rmm_ | DISPLA[CEMENT |

Sl

D1

Figure 5-19

Indexed addressing.

New Addressing Modes 5'45

BASED INDEX ADDRESSING

Creating different titles for these various forms of indirect register ad-
dressing probably seems hardly worth the trouble. However, it does
help establish a uniqueness between register functions. This is more
apparent when you consider Based Index addressing.

Figure 5-20 shows how the EA is determined from an instruction using
Base Indexed addressing. The EA is derived from the sum of both a
Base register displacement value and an Index register displacement
value, as well as an immediate displacement value. Thus, you have
a very flexible mode of addressing, since two of the address components
(the registers) can be modified at program run-time. This provides a
very convenient way for a program to address an array of data within
a structure.

OPCODE MOD R/M |DISPLAC|EMENT 1

p———

BX
[or +

BP

DI

Sl
- or +
Y
EA

Figure 5-20
Based Index addressing.

5'46 UNIT FIVE

PAY_FILE STRUC

EMPLOYEE_ID DB [

DEPT DB o
VAC_DAYS DB 9

RATE D o

PAY DB 12 DUP (0)
PAY_FILE ENDS

Figure 5-21

Structure template containing an array of data.

Figure 5-21 is a structure template containing an array of data. Think
of it as a simple company personnel file for handling pay data. Figure
5-22 is a graphic example of a memory structure created from the
template in Figure 5-21. It shows two examples of accessing an element
in the PAY field using Based Indexed addressing.

HIGH ADDRESS

T PAY (ARRAY 0]

DISPLACEMENT il i DISPLACEMENT
|—-__ .Pay] (ARRAY 11) [.pay —]--—I
| (ARRAY 10) |
| (ARRAY 9) é |
| BASE REGISTER (ARRAY 8) BASE REGISTER |
| |_STRUC NAME | (ARRAY 7) [sTRUC NAME | |
| % —» (ARRAY 6)]
|| ____(ARRAY 5) | |
| | _INDEX REGISTER i (ARRAY 4) INDEX REGISTER | |
Vs] " (ARRAY 3) 1 |1
|| v (ARRAY 2) |
|11 ||
|| (.
[| |

| |

L
|
A} | (aRRAYD —— B]
| _T
I

| RATE (HIGH)
‘1 RATE (low) | . | (
| ’: VAC DAYS :‘ |
| DEPT |
e ———— = * o Twriove 10 Y -
) p2

LOW ADDRESS

Figure 5-22
Using Based Index addressing to access a byte
within an array within a structure.

New Addressing Modes | D-47

On the left, the BASE REGISTER contains the offset address of the
start or base of the structure. The DISPLACEMENT is the offset to the
PAY field. The INDEX REGISTER contains the offset to the seventh
element in the PAY array. If the data is being moved into the AL register,
the instruction can be written:

MOV AL, [BX][SI].PAY

where BX is the Base register, SI is the Index register, and “.PAY”
is treated as an immediate value in the assembled instruction.

The right side of the figure illustrates the same operation; only here,
the second element in the array is being accessed. The instruction is
still written:

MOV AL, [BX][SI].PAY

because this type of addressing scheme relies on the program to load
the Base and Index registers with the appropriate displacement values.

Naturally, we could have substituted the constant 5 for “.PAY” and
accomplished the same results. On the other hand, it’s always a good
idea to have the assembler do as much of the programming as possible,
to reduce the chance for error.

Notice that each address displacement value was assigned a specific
function in the instruction. While this is not an absolute requirement,
it is a good idea from a programming point of view since it adds con-
tinuity between instructions using the Based Index addressing mode.
It also makes the program easier to follow when you or someone else
examines it at a later time. Therefore, we suggest you adopt this format:

1. The starting address of the structure should be in a Base
register.

2. The offset to the array field in the structure should be
the immediate displacement value of the instruction.

3. The offset to the desired array element should be in an
Index register.

Stick to this format and you’ll have a dynamic instruction that lets
you access any structure in memory, and any array element within
that structure.

5'48 UNIT FIVE

All of the previous examples of register indirect addressing isolated
each displacement value (except the immediate displacement) with
square brackets. For example:

MOV AH, [BX]

MOV AH, [BP]+5
MOV AH,[DI]-5
MOV AH, [BX][SI]+5

While these are adequate, MACRO-86 does recognize variations of that
format. For example:

MOV AH, [BP+5]
MOV AH, [SI][5]

MOV AH, [BP+DI]+5

MOV AH, [BX+SI+5]

MOV AH, [BP+SI-5]

MOV AH, [BX+DI][-5]
MOV AH, [BX+SI].FIELD.1

In each case, the assembler recognizes that the register or constant en-
closed by square brackets is a displacement in a register indirect ad-
dressing instruction. The only item that cannot be enclosed is the field
name in a structure. We suggest that you choose one style and stick
with it. This way, you'll reduce the chance for error.

While we're on the subject of errors, the instruction:
MOV [BX][DI]+5,2930

will cause an assembly error. This is because the assembler has no
way to determine the size (byte or word) of the memory location pointed
to by the destination operand EA. When size must be determined, use
the assembler operator PTR, as in:

MOV WORD PTR [BX][DI]+5,2930

This tells the assembler the size of the memory location. You will have
no problem with instructions that use a structure field name. The as-
sembler knows the size of every field in a structure.

New Addressing Modes 5‘49

Self-Review Questions

26. For register indirect addressing, the EA is determined by the dis-

placement value in the instruction operand.
True/False

27. Of the four registers used with register indirect addressing, two
are base registers, while the other two are
registers,

28. The brackets in the instruction:
MOV AX, [DI]
indicate that the value being moved into the AX register is in

the DI register.
True/False

29. The brackets are an assembler directive.
True/False

300 The __ ___ instruction is used to load the effective address
of a name into a register.

31. The instruction:
MOV [BP],AL
isanexampleof _____ addressing.
32. Theinstruction:

MOV [DI],AL

isanexampleof ___________addressing.
33. Based Index addressing is a register form
of memory addressing.

34. To maintain instruction continuity in Based Index addressing,
you should place the starting, or offset, address of the structure
in the register.

35. The instruction:
MOV BYTE PTR [BP+SI+5],AL
is the correct way to write a Based Index addressing mode instruc-

tion.
True/False

5'50 _ UNIT FIVE

EXPERIMENT

Indirect Addressing

OBJECTIVES: 1. Demonstrate the new assembler direc-
tive define doubleword.

2. Demonstrate the two new methods for
arranging data — Structures and Rec-
ords.

3. Demonstrate the various forms of indi-
rect addressing.

Introduction

Data manipulation is one of the most important functions of the micro-
computer. Storing data within memory and later retrieving that data
can be a difficult programming task, as you learned in the earlier experi-
ments. The new methods for arranging and addressing data presented
in this unit have made the job a little easier. Now you can access mem-
ory through a base or index register rather than rely on a variable name
as the sole means for address identification. This experiment will show
you how the MPU uses structures, records, and indirect addressing.

The first program you will write simply assigns data to memory. It
uses the examples given in the unit to show you how the assembler
structures the data without the clutter of instruction code.

New Addressing Modes 5'51

Procedure

1. Call up your editor and enter the program listed in Figure 5-23.
Assemble, link, and convert the file to a COM file. The program
creates three records, four unique structures, and one array of
ten structures.

TITLE EXPERIMENT 5 -- PROGRAM 1 —- ASSIGNING DATA TO MEMORY
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, 5S: COM_PROG
;
ORG 100H
START:

i

CONTROL RECORD REG:S,STATE:2=3,FIELD:5,LEVEL:4=1
3

FORWARD CONTROL <>

REVERSE CONTROL <25,1,10,7>
STOP CONTROL <20, ,16>

1

TABLE STRUC

NAME DB 'LARSEN LP * 315 character string
DATE DB *03-13-64’ 38 character string
STATUS DB " ;Single character string
VAC DB 15 tData byte

RATE b) 18000 sData word

DEPT DW 638 sData word

DIV DB 18 sData byte

TABLE ENDS

i
LARSEN TABLE <>
ROBERTS TABLE <’ROBERTS PA’,’@3-19-84’,'F’,5,5000,5638, 18>
JOHNSON TABLE <(’JOHNSON RJ’,’03-19-84°,’M’,10,10600,538,18)
JON TABLE <’JON KC’,’03-19-84°,'F’, 10,7500,438, 18>
EMPTY TABLE 10 DUP (<{>) jArray of duplicated structures
¥
COM_PROG ENDS

END START

Figure 5-23
Assigning data to memory.

2. Using the “TYPE” command, display the assembler listing. Stop
the scrolling when the three records are visible. The first record,
FORWARD, duplicates the record template; thus, the REG and
FIELD fields are empty, or zero, and the STATE and LEVEL fields
contain the predefined data. The second record, REVERSE, as-
signs new data to each field. The last record, STOP, assigns new
data to the REG and FIELD fields, and retains the original data
inthe STATE and LEVEL fields.

5-52 | uniTFive

Notice that the record template is assigned no offset address
value. This is because the record template is not part of the pro-
gram. Only the records created from the template are part of the
program.

The offset address for the record STOP is _ _ _ _H. What should
be the offset for the structure LARSEN? _ _ _ _H.

Scroll the assembler listing down to the structure LARSEN. The
offset addressis — ___ _H.

The structure LARSEN occupies the next consecutive offset ad-
dress after the record STOP. Like the record template, the struc-
ture template is not part of the program.

Scroll the assembler listing until you can see the NAME field
for both the structure JOHNSON and the structure JON. The
NAME field for the structure JOHNSON contains one more char-
acter than the structure template. As a result, the original ASCII
code is simply overwritten. That isn’t the case for the NAME
field in the structure JON. Here, the field contains three fewer
characters. Rather than leave the extra three original characters
unchanged, the assembler automatically converted them to 20H,
the ASCII code for the “space” character. Thus, you see only the
tield characters specified in the structure statement.

Scroll the assembler listing until you can see the “Structures and
Records” table on the “Symbols” page. Notice that the record
template CONTROL contains 16 (10H) field bits (Width) and four
fields (# fields). Each field is then listed, with the table showing
the offset of each field into the record (Shift), the size of each
field (Width), the value needed to isolate a field (Mask), and the
initial contents of each field. The structure template TABLE is
listed after the record. The template contains 30 (1EH) bytes of
data (Width) and seven fields (# fields). The field names are then
listed with the offset byte count into the structure (Shift).

New Addressing Modes 5'53

Call up the debugger and load your program COM file. Then type
“D100” and RETURN. Finally type “D180” and RETURN. At least
the top half of your display should be similar to the one shown
in Figure 5-24. Notice that the first six bytes of data in the figure,
and your display, represent the three record values. The next
119 (77H) bytes represent the data in the first four structures.
The remaining data represents the first field in the structure
template duplicated almost nine times. As you can see, the assem-
bler version (1.07) that was used to assemble this program con-
tains the bug described earlier in the unit. If your display is the
same, don't try to duplicate a structure. The assembled data will
be useless. Versions 1.10 and later will assemble correctly.

DEBUG version 1.8
>D199
OA09:0100 ©1 04 A7 CA @1 A7 4C 41-52 53 45 4E 20 4C 50 20 ..’J.’LARSEN LP
0A09:0110 20 20 20 20 20 30 33 2D-31 33 2D 38 34 4D oF 10 03-13-84M. .
OR097:0120 27 TE 02 12 52 4F 42 45-52 54 53 20 50 41 20 20 ’~..ROBERTS PA
OA0T:10130 20 20 20 30 33 2D 31 39-2D 36 34 44 95 88 13 7E 03-19-84F...~
0A09:10140 02 12 4A AF 48 4E 53 AF-4E 20 352 4A 20 20 20 20 ..JOHNSON RJ
0A09:10150 20 39 33 2D 31 39 2D 38-34 4D 0A 10 27 7E 92 12 03-19-84M. .’ ~..
ORG7:0160 4A 4F AE 20 4B 43 20 20-20 20 20 20 20 20 20 30 JON KC ']
mve;owe 33 2D 31 39 2D 38 34 46-0A 4C 1D 7E 02 12 4C 41 3-19-84F.L.~..LA
0A99:0180 52 53 45 4E 20 AC S0 20-20 20 20 20 20 4C 41 52 RSEN LP LAR
0A0910190 53 A5 AE 20 4C S50 20 20-20 20 20 20 AC 41 52 53 SEN LP LARS
OABT: 01RO 45 AE 20 AC 50 20 20 20-20 20 20 4C 41 52 53 45 EN LP LARSE
GA0T:01B0 A4E 20 AC S50 20 20 20 20-20 20 AC 41 52 53 45 4E N LP LARSEN
QA07:01C0 20 AC 50 20 20 20 20 20-20 AC 41 52 53 45 4E 20 LP LARSEN
OA0T:01D0 4C 50 20 20 20 20 20 20-4C 41 5253 45 4E 20 4C LP LARSEN L
GHR10IED 30 20 20 20 20 20 20 AC-41 52 53 45 4E 20 AC S50 P LARSEN LP
OA0T:101FO 20 20 20 20 20 20 AC 41-52 53 45 4E 20 AC 50 20 LARSEN LP
>

Figure 5-24

Debugger display of data assigned to memory.

5‘54 UNIT FIVE

MOV DX, REVERSE ;Get record REVERSE
AND DX, MASK FIELD ;Mask the record field FIELD
MOV CL,FIELD ;Get FIELD shift count
SHR DX, CL 3Shift FIELD to right end
MOV AL, LARSEN. STATUS ;Get STATUS field of sturcture
ADD BYTE PTR JON.VAC,S jAdd 5 to VAC field of structure
LEA BX,ROBERTS ;Get EA of structure ROBERTS
nov S1,[BX1.RATE 3Get RATE field of ROBERTS
INT 3 ;Return to debugger
Figure 5-25
Code for the data program.

Exit the debugger. Then call up the editor and your program (from
Figure 5-23). Add the instructions listed in Figure 5-25 directly
after the START label in your program. If you have the IBM ver-
sion 1.00 assembler, change the third instruction from:

MOV CL,FIELD
to:
MOV CL.4

to make sure the correct shift count is loaded. (All other assembler
versions should load the shift count properly.) Finally, delete
the structure table named EMPTY.

Assemble, link, and convert the program to a COM file. Examine
the assembler listing for your program and record the offset ad-
dress for the following names:

REVERSE NUp— .

LARSEN.STATUS ____H

ROBERTS ISV - |

ROBERTS.RATE s H

JON.VAC O, .|
Then record the “Shift” value — _ _ _H to the structure field
RATE. Finally, record the “Mask” value — _ __ _H and the “Shift”

value _ __ _ _H for the record field FIELD.

New Addressing Modes 5'55

Call up the debugger and load your program COM file. As you
single-step through the program, compare the values you re-
corded in Step 8 with the values calculated by the debugger. Re-
member, the debugger never shows an operand name, just the
assembled value for that name. The first instruction moves the
value found at REVERSE into the DX register. Execute the instruc-
tion with the “T” (single step) command. The DX register contains
the value _ __ _H.

Execute the next instruction. The contents of the DX register is
ANDed with the “Mask” value for the field FIELD. The DX register
should now contain the value for the field FIELD, with all other
fields zero.

Execute the next instruction. The value 04 is moved into the CL
(Count) register. This is the shift count calculated by the assem-
bler for field FIELD. If you are using assembler version 1.00, you
had to calculate your own shift count. As an option, you could
have used the value zero initially; assembled the program;
examined the listing to see what shift value the assembler calcu-
lated; substituted the correct shift value in the program; and reas-
sembled the program.

NOTE: If you are using assembler version 1.00 and loaded the
CL register with the immediate value 04, the next instruction
is the Shift Right instruction. If, on the other hand, you allowed
the assembler to calculate and load the CL register with the shift
value, the next two instructions are NOP (no operation instruc-
tions). These are caused by the assembler and its 2-pass method
of assembly. On the first pass, it identifies all the program sym-
bols and guesses how much code will be required to execute
each instruction. When it sees a field name, it thinks the name
might be a variable, and thus reserves two bytes of code for the
offset address. On the second pass, the assembler knows the name
is a field name and no offset is necessary. Since the code space
is already reserved, the assembler fills out the empty space with
two NOP instructions (code 90H). If necessary, execute the two
NOP instructions.

Execute the next instruction. The contents of the DX register are
shifted right the bit count in the CL register. The low-order bits
of the DX register now contain the contents of the field FIELD
(OAH).

Execute the next instruction. The contents of the structure LAR-
SEN, field STATUS is moved into the AL register. This is the
ASCII code for the character “M”.

5"56 UNIT FIVE

Examine the memory byte at the offset address for structure JON,
field VAC — type “D180” and RETURN. (You recorded the ad-
dress in Step 8.) The value stored at that address is _ _H.

Execute the next instruction. Five is added to the structure JON,
field VAC. Again, examine the memory byte at the offset address
for the structure JON, field VAC. The value is _ _H. Comparing
this value to the previous value, you can can see that five was
added to the field VAC.

Execute the next instruction. The effective address (EA) for the
structure ROBERTS is moved into the Base register.

Execute the next instruction. This instruction used Based ad-
dressing to move the contents of the field RATE, in the structure
identified by the Base register, into the SI register. When the in-
struction was assembled, the “Shift” value for the field RATE
was used to form the immediate displacement value.

Discussion

By now, you should have a fairly good idea how records and structures
are created and their data accessed. One important item was brought
out in the experiment. When the assembler encounters a label or name
in an instruction, it has no idea how that symbol is going to be used
until it finds the source of the application. This type of reference is
called a forward reference, where the instruction is referencing forward
or further on in the program. A forward reference can cause assembly
errors, as was the case with assembler version 1.00. Later in the course,
you will find where a forward reference can cause other problems.

There is a way to resolve forward reference problems; place the data
in front of any reference. This way, the assembler knows the type and
source of any reference before it sees the reference. Had we placed
the records and structures in front of the code in the last program,
the program would have assembled properly regardless of the assembler
version.

New Addressing Modes 5'57

Figure 5-26 shows how the data could be placed in front of the code
in the previous program. Placing the data in this manner resolves the
forward reference problem, but it creates another problem. Recall that
the MPU assumes that program code begins at offset address 100H.
Thus, it will decode and try to execute the first program byte after
the ORG 100H assembler directive, not realizing that it’s decoding data
rather than code. Naturally, the program will not run properly.

To resolve that problem, we place an unconditional jump instruction
at the beginning of the program. This forces the MPU to jump around
the data to the code portion of the program. The next part of the experi-
ment will give you an opportunity to try the new program arrangement.

TITLE EXPERINENT 5 — PROGRAM 3 — ELIMINATING FOMARD REFERENCES
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, SS: CON_PROG
' ORG 100H
START: J#P BEGIN

CONTROL RECORD REG:S,STATE:2=3,FIELD:5, LEVEL: 4=1
FORWARD CONTROL <)

REVERSE CONTROL <25,1,10,7>
STOP CONTROL <20,,16>

t

TABLE STRUC

NAME DB *LARSEN LP ? 315 character string
DATE DB ’93-13-84’ ;8 character string
STATUS DB ‘W 1Single character string
VAC DB 15 sData byte

RATE Di 10000 sData word

DEPT D 638 ;Data word

DIV DB 18 ;Data byte

TABLE ENDS

1]

LARSEN TABLE <>

ROBERTS TABLE <’ROBERTS PA’,’03-19-84’,'F’,5,5600,638,18>
JOHNSON TABLE <’ JOHNSON RJ’,’03-19-84,’M’,10, 10000, 638, 18>
JON TABLE <'JON KC’,’03-19-847,°F’,10,7500,638,18)

i

BEGIN: MOV DX, REVERSE ;Get record REVERSE
AND DX, MASK FIELD 1Mask the record field FIELD
MOV CL,FIELD ;Get FIELD shift count
SHR DX, CL 3Shift FIELD to right end
MOV Al ,LARSEN. STATUS 1Get STATUS field of sturcture
ADD BYTE PTR JON.VAC,S 1Add 5 to VAC field of structure
LEA BX,ROBERTS ;Get EA of structure ROBERTS
MOV SI,[BX1.RATE 1Get RATE field of ROBERTS
INT 3 sReturn to debugger

L]

COM_PROG ENDS
END START

Figure 5-26

Placing data in front of code to eliminate forward reference problems.

5"58 | UNIT FIVE

Procedure Continued

10.

11.

Exit the debugger. Then use your editor to move your program
code after the record and structure data, as shown in Figure 5-26.
Add the label BEGIN to the first line of code in that group of
code. Now add the instruction:

JMP BEGIN

after the label START, at the beginning of the program. If you
are using assembler version 1.00, change the instruction:

MOV CL,04
back to:
MOV CL,FIELD

Since the assembler doesn’t have to make a forward reference,
the instruction will assemble properly. Assemble, link, and con-
vert your program to a COM file.

Examine the assembler listing for your program. The first instruc-
tion is at offset address 0100H. The second instruction is at offset
address — — __ _H.

Notice that the code for the fourth instruction:
MOV CL,FIELD

is only two bytes long — there are no 90H (NOP) code bytes. This
is because the assembler recognized the name FIELD, and thus
knew the exact number of code bytes to reserve for the instruc-
tion.

New Addressing Modes 5'59

12.

Call up the debugger and load your program COM file. Examine
the first instruction in the program. Type “R” and RETURN. The
first instruction is:

JMPS 0181
or
JMP 0181

Your version of DEBUG will determine whether you see the
mnemonic JMPS or JMP. The “S” at the end of the mnemonic
indicates that the assembler treated the jump instruction as a
“short” jump. That is, the target address is within 128 bytes of
the instruction. The immediate value following the mnemonic
is the offset address of the target. It should match the value you
recorded in Step 11. When the jump instruction is executed, the
MPU will load that offset value into the Instruction Pointer.
Whether your debugger prints JMPS or JMP, you know it is a
short jump, rather than a normal jump, because of the hex value
in the first byte of the instruction machine code. A short jump
has the value EB, while a normal jump has the value E9. A handy
reference to the machine code (hex or binary) values for each
instruction is provided in Appendix B.

Execute the jump instruction. The IP now contains the value
0181H, and the MPU is ready to execute the first instruction after
the block of data. The rest of the program will execute just like
the earlier program.

Discussion

Eliminating forward references will reduce the number of possible as-
sembly errors when you begin writing complex programs. For that
reason, we suggest that you make it a habit to always place your pro-
gram data ahead of the code. Just don’t forget to use a jump instruction
to show the MPU where the code begins. We will structure all future
programs with the data preceding the code.

5-60 | uniTFive

The last part of this experiment deals with accessing arrays of data
within structures using Based Index addressing. Let’s begin with a pro-
gram that stores data in four different structures. The program is shown
in Figure 5-27. While this program is similar to the last program, we
suggest that you enter the program from scratch.

TITLE EXPERIMENT 5 —— PROGRAN 4 — WRITING TO STRUCTURES
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, 5S: COM_PROG

1
STRUC_SIZE EGU 54
]
ORG 160H
START: JMF BEGIN
]
TABLE STRUC
NAME DB 'LARSEN LP *315 character string
DATE DB ’93-13-84* 18 character string
STATUS DB ‘M’ ;Single character string
VAC DB 15 ;Data byte
RATE D 10000 ;Data word
PAY DW 12 DUP (@) ;Set up pay table
DEPT D 638 ;Data word
DIV DB 18 sData byte
TABLE ENDS

¥

LARSEN TABLE <

ROBERTS TABLE <’ROBERTS PA’,’03-19-84°,°F’,S,5000>
JOHNSON TABLE <’JOHNSON RJ’,’@3-19-84°,°M’,10,10000>
JON TABLE <’JON KC’,’03-19-84°,’'F’,10,7500)

1
BEGIN: LEA BX, LARSEN ;Get base address
SuB sI,sI jZero index
MOV WORD PTR [BX+SI1.PAY,150;Store pay @
ADD 51,2 sIncrement index
MOV WORD PTR [BX+SI1.PAY,17@;Store pay 1
ADD BX,STRUC_SIZE ;Next base address
MOV WORD PTR [BX+SI1.PAY,120;Store pay 1
SuB s1,2 sDecrement index
nov WORD PTR [BX+SI1.PAY,10@;Store pay @
ADD BX,STRUC_SIZE sNext base address
MoV WORD PTR [BX+SI1.PAY,160;Store pay @
ADD s1,2 sIncrement index
MoV WORD PTR [BX+SI11.PAY,180;Store pay 1
ADD BX,STRUC_SIZE tNext base address
MOV WORD PTR [BX+SI1.PAY,130;Store pay 1
SUB s1,2 sDecrement index
MOV WORD PTR [BX+S511.PAY,110;Store pay @
INT 3 jReturn to debugger
3
COM_PROG ENDS
END START
Figure 5-27

Writing data to structures using Based Index addressing.

New Addressing Modes 5"61

Procedure Continued

13.

14.

15,

Exit the debugger. Then call up the editor and enter the program
in Figure 5-27. The program is designed to create four structures,
each with a field called PAY that contains an array of 12 words.
The program code loads a value into the first two array locations
in each structure field.

Assemble, link, and convert your program into a COM file. Then
examine the assembler listing and record the offset address for
the following structure fields:

LARSEN.PAY ____H
ROBERTS.PAY ____H
JOHNSON.PAY ____H
JON.PAY PR -

You will use these addresses to locate data within your program
in the next step.

Call up the debugger and load your program COM file. Record
the value of the word of data stored at the following locations.
Use the “D” (Dump) command to examine the locations.

LARSEN.PAY |
LARSEN.PAY+2 ____H
ROBERTS.PAY ____H
ROBERTS.PAY+2 ____H
JOHNSON.PAY —___H
JOHNSON.PAY+2 ____H
JON.PAY ——__H
JON.PAY +2 ____H

You should have found the value zero at each of these locations.
Any other value would indicate a problem in your program’s
structure initialization statements.

5'62 _ UNIT FIVE

16.

Execute the first instruction of the program — type “T” and RE-
TURN. The MPU is now looking at the first instruction after the
program structure data, the load effective address instruction.

Execute the instruction. This loads the effective, or offset, address
of the first structure (LARSEN) in the program into the Base regis-
ter. The program will use the contents of the Base register to
point to the beginning of each structure in the program.

Execute the next instruction. Here, the Source Index register is
zeroed so that it can be used to point to the first word in the
structure field array LARSEN.PAY.

Execute the next instruction. This Based Indexed addressing in-
struction loads the value 150 (96H) into the first memory word
location in the structure field array LARSEN.PAY.

Execute the next instruction. The Source Index register is incre-
mented by two to point to the next word in the array.

Execute the next instruction. The value 170 (0AAH) is loaded
into the second memory word location in the structure field array
LARSEN.PAY.

Execute the next instruction. The value 54 (36H) is added to the
Base register. (This is the number of bytes in the structure
template TABLE.) Therefore, the Base register now points to the
beginning of the next structure (ROBERTS) in the program.

The remaining program instructions repeat the data storage pro-
cess for the other structures. The Source Index register is either
incremented or decremented so that the first two memory word
locations in each array receive a value. Single step through the
remaining instructions, or use the “G” (Go) command to finish
the data storage process.

New Addressing Modes 5'63

17.

Now let’s see if the program worked. Type “D100” and RETURN.
Then type “D180” and return. Examine the following offset ad-
dress locations and record the word values at those locations.

LARSEN.PAY
LARSEN.PAY +2
ROBERTS.PAY
ROBERTS.PAY + 2
JOHNSON.PAY
JOHNSON.PAY +2
JON.PAY
JON.PAY +2

These are the hexadecimal values for the data stored by the pro-

gram.

011EH
0120H
0154H
0156H
018AH
018CH
01COH
01C2H

5'64 UNIT FIVE

Discussion

You are probably wondering why we had you write a program that
repeated essentially the same operation eight times. First, it gave you
an opportunity to see how the Based Index addressing mode of opera-
tion worked. Second, it provided a means for loading a collection of
unique data into a number of structure field arrays. This data will be
used in the next program.

New Addressing Modes 5‘65

Procedure Continued

18.

19.

Here's your chance to show what you have learned. Call up the
editor and add the necessary code and defined data area to re-
trieve and store:

A. The NAME from each structure.

B. The second word of data from the field PAY associated with
each structure name.

Arrange the stored data so that each structure “name” is followed
by its “pay.” Do not change the earlier program code.

Assemble, link, and convert your program to a COM file. Then
call up the debugger and evaluate your program. Remember, just
because a program assembles properly does not necessarily mean
it will run properly. If you have a problem with execution:

A. Make sure each instruction performs the operation you ex-
pected.

B. Make sure the address references in an instruction access
the data you expected.

These are the two most likely problems when a program assem-
bles properly but runs improperly.

5'66 UNIT FIVE

TITLE EXPERIMENT 5 -- PROGRAM 5 -- WRITING/READING STRUCTURES
COM_PROG SEGMENT
ASSUNE CS:COM_PROG, DS: COM_PROG, 551 COM_PROG

L)
STRUC_SIZE EQU 54 sBytes in structure
STRUC_COUNT EQU 4 jNumber of structures
NAME _SIZE EQU 15 ;Bytes in structure NAME
PAY_COUNT EQU 2 ;0ffset to PAY word
]

ORG 100H
START: P BEGIN ;Junp around data area
]
TABLE STRUC
NAME DB ’LARSEN LP *+15 character string
DATE DB '@3-13-84' 38 character string
STATUS DB ‘M ;Single character string
VAC DB 15 jData byte
RATE 1] 10000 ;Data word
PAY DW 12 DUP (@) $Set up pay table
DEPT D 638 sData word
D1V DB 18 ;Data byte
TABLE ENDS
¥
LARSEN TABLE <>

ROBERTS TABLE <’ROBERTS PA’,’@3-19-84',’F’,5,5000>
JOHNSON TABLE <’JOHNSON RJ’,’03-19-84",’M’,10,10000>
JON TABLE <’JON KC’,’03-19-84",°F’,10,7500)

PAY_DATA DB STRUC_COUNT¥(NAME_SIZE+2) DUF (@)
;Storage area for structure NAMEs and their pay

1
BEGIN: LEA BX,LARSEN ;Get base address
SUB §1,81 ;Zero index
MOV WORD PTR [BX+S11.PAY,15@;Store pay @
ADD s1,2 jIncrement index
MOV WORD PTR [BX+SI1.PAY,170;Store pay 1
ADD BX,STRUC_SI1ZE sNext base address
MoV WORD PTR [BX+S1].PAY,120;Store pay 1
SUB sI,2 ;Decrement index
MOV WORD PTR [BX+SI1.PAY,100;Store pay @
ADD BX, STRUC_SIZE sNext base address
nov WORD PTR [BX+SI1.PAY,16@;Store pay @
ADD s1,2 i Increment index
nov WORD PTR [BX+SI].PAY,18@;Store pay 1
ADD BX,STRUC_SIZE jNext base address
MOV WORD PTR [BX+S511.PAY,130;Store pay 1
SUB 81,2 sDecrement index
MOV WORD PTR [BX+SI1.PAY,110;Store pay @
L]
LEA BX,LARSEN ;Get structure base address
MOV SI,PAY_COUNT sPoint to pay word in array
LEA BP,PAY_DATA ;Get storage area address
MOV DX,STRUC_COUNT ;Data retrieval loop count
NEXT: CALL GET_NAME jName retrieval subroutine
CALL PAY_SAVE ;Pay retrieval subroutine
DEC DX ;Count down loop
JNZ NEXT ;Get more data?
INT 3 ;No, return to debugger
i
Figure 5-28A

Program to write data to and read data from a structure field array.

New Addressing Modes 5'67

Discussion

Figure 5-28 Part A and Part B show one method for retrieving and
storing the specified data. Again, we must emphasize that there are
many ways to accomplish a task in a program. Whether or not your
program matches ours is not important; what is important is whether

or not your program did the job. Let’s look at our example.

To begin, we wanted an easy method for changing the number of struc-
tures accessed, the number of NAME field bytes accessed, and the indi-
vidual array word accessed. Searching the program for each occurrence

isn’t easy, so we used equate statements for these values.

GET_NAME:

AGAIN: MOV

3
PAY_SAVE:

ING
INC
RET

COM_PROG ENDS

Continuation of the program to write data to and read data froma

CX,NAME_SIZE sLoad name byte count
DI1,DI sZero the index register
AL, [BX+DI1 ;Get character in name
[BP1,AL ;Save character
DI ;Point to next character
BP jPoint to next storage area
AGAIN sMore characters?

;No, return from call
AX,[BX+SI1.PAY ;Get pay word
[BP1,AL ;Save low byte first
BP ;Point to next storage area
[BP]1,AH 1Save high byte next
BP sPoint to next storage area
BX,STRUC_SIZE ;Point to next structure

sReturn from call
START

Figure 5-28B

structure field array.

5"68 UNIT FIVE

The next order of business was the data table. Since its size could
change with a change in the number of structures or the number of
bytes assigned to the NAME field, we created a compound expression
for the DUP count. STRUC_COUNT defaults to the number of structures
in the program. NAME_SIZE defaults to the number of bytes in the
NAME field. Two is added to the NAME_SIZE because the PAY field
array word will occupy two bytes of storage for each structure.

The code to retrieve and store the required data is located near the
bottom of Figure 5-28A. First, the Base register is loaded with the EA
for the first structure. Then the Source Index register is loaded with
the offset to the field array word to be stored. Finally, the EA for the
storage area is loaded into the Base Pointer register. This sets-up three
of the four addressing registers used by the program.

Since the program will be repeating two basic move operations a
number of times, we decided to use a subroutine for each move. To
keep track of the structures that have been accessed, we used the DX
register as a counter. For that reason, the next instruction loads the
DX register with the number of structures being accessed by the pro-
gram,

The next two instructions call the subroutine to get the structure name
and the subroutine to get the PAY field word. Then the DX register
is decremented. If it isn't zero, the two subroutine calls are repeated.
When DX finally reaches zero, the jump is ignored and the interrupt
is executed.

The last part of the program contains the two subroutines. The first
one retrieves and stores the structure name, one byte at a time. To
keep track of the bytes, the CX (Count) register is loaded with the
number of bytes in the structure NAME field. The Destination Index
register is used to point to the character being moved. To begin the
routine, it is zeroed to point to the first byte. The next instruction uses
Based Index addressing to retrieve the first character. Then the charac-
ter is stored at the address pointed to by the Base Pointer register.
Finally, the Destination Index and the Base Pointer registers are incre-
mented to point to the next “name” character and the next storage
location for that character. After the routine loops the NAME_SIZE
count (15 in this case), the return from subroutine instruction sends
the MPU back to the main program.

New Addressing Modes 5'69

When the PAY_SAVE subroutine is called, the second word value from
the PAY field array is stored immediately after the structure NAME.
Using Based Index addressing, the word is moved into the AX register.
Then the low-byte of the word is stored in memory. The Base Pointer
register is incremented, and the high-byte of the word is stored. The
Base Pointer register is incremented one more time in anticipation of
the next storage operation in the GET_NAME subroutine. For that same
reason, the value 54 (the size of the structure) is added to the Base
register. Now the Base register is pointing to the beginning of the next
structure. Finally, the return from subroutine instruction sends the
MPU back to the main program.

After the call instructions have executed three more times, the interrupt
instruction sends the MPU back to the debugger. The name of each
structure and the related “pay” data are stored in the memory area
identified by the name PAY_DATA.

This completes the Experiment for Unit 5. Proceed to the Unit 5 Exami-
nation.

5‘70 _ UNIT FIVE

UNIT 5 EXAMINATION

Refer to Figure 5-29 as you answer the following questions. You can
assume that the program will assemble properly.

1. The program contains —_________ structures.
2. Theprogramcontains____ records.
3. Structure THREE, field MEDIUM contains the value _ __ _ _H.

4. Structure TWO, field SMALL contains the value _ _H.
5. Using record AM for the data, the time is:

6. The second instruction in the program loads the AL register with
the value _ _H.

7. Structure TWO, field MEDIUM contains the value — _ _ _H after
the program is executed.

8. The DX register contains the value _ _ _ _H after the program
is executed.

9. The BP register contains the value _ _ _ _H after the program
is executed.

New Addressing Modes 5'71

TITLE EXAMINATION S5 -- PROGRAM 1 -- RECORDS, STRUCTURES, ETC.
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, $5: COM_PROG

ORG 100H
START: U BEGIN ;Jump around data area
L)
TEMP STRUC
DATE DB '@3/23/84"
LARGE DD TH3932H
MEDIUM DW ?
MANY D 45,44,89
SMALL DB 1
TEMP ENDS
TIME RECORD HOURS:4,MINUTES:6,SECONDS: &
ONE TEMP (9]
TWO TEMP {,99999H, 1 11IH>
THREE TEMP $445,,25%
Al TIME <8>
PH TIME 430>
1]
BEGIN: MOV AL ,ONE. SMALL
LEA BX, TWO
ADD [BX].MEDIWM, 10
MoV DX, PM
AND DX, MASK HOURS
MOV CL, HOURS
SHR Dx, L
MoV DI, 4
MOV BP, [BX+DI1.MANY
INT 3
]
COM_PROG ENDS
END START
Figure 5-29

Figure for the Final Examination questions.

5'72 UNIT FIVE

EXAMINATION ANSWERS

Refer to Figure 5-30 as you study the following answers.

1.

The program contains three structures.
The program contains two records.
Structure THREE, field MEDIUM contains the value 06005H.
Structure TWO, field SMALL contains the value 01H.
Using record AM for the data, the time is:

08:00:00

The second instruction in the program loads the AL register with
the value 01H.

Structure TWO, field MEDIUM contains the value 111BH after
the program is executed.

The DX register contains the value 0000H after the program is
executed.

The BP register contains the value 0059H after the program is
executed.

New Addressing Modes 5'73

TITLE EXAMINATION 5 -- PROGRAM 1 -- RECORDS, STRUCTURES, ETC.
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, SS: COM_PROG

ORG
START: J#P
;

TE¥ STRUC
DATE DB

LARGE DD

MEDIUM DN

NANY DN

SwALL DB

TEP ENDS
TIE RECORD
N TE
™ TEWP
THREE TEMP
w TIE
M TN
4

BEGIN: MOV

LEA

ADD

MOV

AND

MOV

SHR

MOV

MoV

INT
COM_PROG ENDS

END

100H
BEGIN sJump around data area

‘03/23/84¢
7659324

?

65,44,89

1

HOURS: 4, MINUTES: 6, SECONDS: &
O

<, 99999H, 1111H>

$os3, s 255)

8>

<,,30)

AL , ONE. SMALL
BX, TWO

(BX1. MEDIUM, 10
DX, PN

DX, MASK HOURS
CL,HOURS

DX,CL

DI, 4

BP, (BX+D11. NANY
3

START

Figure 5-30

Figure for the Final Examination answers.

5'74 UNIT FIVE

[y

SELF-REVIEW ANSWERS

The define doubleword assembler directive allows you to assign
two words of data to memory.

An array is a group of two or more common data elements.

The define ten-byte assembler directive creates what could be
considered a 10-byte array of data.

The define quadword assembler directive allows you to assign
four words of data to memory.

The data width assumed by MACRO-86 for each of the define
data assembler directives is as follows:

DB byte
DW word
DD word
DQ word
DT word

The instruction that will move the contents of the AL register
into the third byte of the array named DATA BYTE is:

MOV DATABYTE+2,AL

Remember, the first byte is byte zero. Therefore, the third byte
is in effect, byte two (offset two from the first byte).

The instruction that will move the contents of the BX register
into the fourth word of the array named DATA_WORD is:

MOV DATA WORD +6, BX

Again, the first word is found at offset zero. The next word is
found at offset two, and so on. Therefore, to address the fourth
word in the array, multiply the word location (4) by two, then
subtract two from the product. This will give the operator offset
value that must be added to the operand in the instruction.

New Addressing Modes 5'75

10.

11.

12.

Write the instruction that will move the first byte of data in mem-
ory, initialized by the assembler directive statement:

TEN.BYTE DT 123456 7890H
into the AL register.
MOV AX,TENBYTE

Remember, when you access data initialized by the DT assembler
directive, you must do so in word-sized moves. Since the first
byte is in the lowest memory address, it will be moved into the
low-byte (AL) side of the AX register. Had the question asked
for the second byte, the operation would have required two steps.
First, the first word of data is moved into general register BX,
CX, or DX. Second, the contents of the high-byte of that general
register is moved into the AL register.

A structure is a group of data bytes and/or words that are arranged
in a specific manner.

The data elements of a structure are called fields.

The beginning of a structure template is identified by the directive
statement STRUC.

The end of a structure template is identified by the directive state-
ment ENDS.

5'76 UNIT FIVE

Refer to Figure 5-7 for answers 13 through 17.

13.

14.

15.

16.

17.

TEMP STRUC
F1 DB ’03/05/84’
F2 DD 1290H
F3 1] ?
F4 DB 24,33,85,12
F5 DW 3 DUP (7)
TEN ENDS

Figure 5-7

Figure for answers 13 through 17,

The structure template contains five fields.

The fields that can be overridden are:

F1
F2
F3

The other fields contain multiple elements, and thus cannot be
overridden.

A structure initialization statement named APPLE that duplicates
the template is:

APPLE TEMP <>

A structure initialization statement named PEAR that duplicates
the template three times and changes the contents of the third
field to OABCDH is:

PEAR TEMP 3 DUP (<,,0ABCDH>)

The instructions that will move the ASCII code for the day from
the structure PEAR into the AX register, assuming the first field
contains the character string for the month, day, and year is:

MOV AH,PEAR.F1+3 ;Highbyte of day
MOV AL,PEAR.Fl+4 ;Lowbyte of day

New Addressing Modes 5'77

18.

19.

20.

A record is a collection of data bits that are arranged in byte
or word groups.

The small groups of data bits in a record are called fields.

The assembler directive RECORD identifies the template for a
program record.

Refer to Figure 5-13 for answers 21 through 25.

21.

22.

23.

24,

25.

TITLE UNIT 5 -- PROGRAM 3 -- RECORD REVIEW
COM_PROG SEGMENT
ASSUME CS: COM_PROG, DSt COM_PROG, 551 COM_PROG

ORG 100H
START:
MOV DX, RECORD2
AND DX, MASK F4
MOV CL,F4
SHR DX,CL
i .
TEMPLATE RECORD F1:3=7,F2:4,F3:5=25,F4:2
i
RECORDI TEMPLATE O
RECORD2 TEMPLATE <, OFH, , 3>
RECORD3 TEMPLATE Cisid
i
COM_PROG ENDS
END START

Figure 5-13
Figure for answers 21 through 25.

The record template is named TEMPLATE.

Record RECORD1 contains the value 3864H.

Record RECORD3 contains the value 3864H. The field separator
commas, by themselves, have no effect on the contents of the
record.

The mask for field F4 is the value 0003H.

The contents of the DX register after the SHR instruction is exe-
cuted is 0003H.

5-78 | NI FIvE

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

False. For register indirect addressing, the EA is determined by
the displacement value in the specified register.

Of the four registers used with register indirect addressing, two
are base registers, while the other two are index registers.

False. The brackets in the instruction:
MOV AX, [DI]

indicate that the value being moved into the AX register is found
at the effective address pointed to by the DI register.

True. The brackets are an assembler directive that indicate that
the register within the brackets contains the effective address of
the source or destination operand.

The LEA, or Load Effective Address, instruction is used to load
the effective address of a name into a register.

The instruction:
MOV [BP], AL

is an example of Based addressing.

The instruction:
MOV [DI],AL

is an example of Indexed addressing.

Based Index addressing is a register indirect form of memory ad-
dressing.

To maintain instruction continuity in Based Index addressing,
you should place the offset address of the structure in the Base

register.

False. The instruction:
MOV BYTE PTR [BP+SI+5],AL

is not the correct way to write a Based Index addressing mode
instruction. The assembler operator PTR should only be used
when the assembler cannot determine the size of the memory
location.

LUASNI

Unit 6

EXPANDING THE
INSTRUCTION SET

6"2 UNIT SIX

IBEAUEHEN. ; yones 09 a0 s e 50w 64 SEH05 BT B SEEES SEEE 8% 6-3
IS ORIGCHIVIE 500 10080 Loabans s ERsas & SHR 51 LRt 5d Nes 18 6-4
Unit Activity Guidecoieiiiiii i iieiinnenrannns 6-5
Dt Toanster INsHCORE ; ixv v vev sovevis senss vevey i s s 6-7
Arithmetic INSTUCHIONS . .- - crme 564 0s sntion munns posPees £o.0 6-12
Bit Manipulation Instructionsouvvvueniennnnrnnn. 6-44
EXDOIIABHE oo covmun wammi veinsm #s oy S0 al Besesy @i 6w s 6-55
Uit 6 Examination ; oo v vosee ssosnvasns deseias voass voe 6-79
Bxarainatlon ABSWOTE: ..oxve s s tn mmwes o0 mesas &0 5a 50 6-82

Self-Review Answers P =T SN 6-83

Expanding the Instruction Set 6"‘3

INTRODUCTION

The 8088 MPU has about 155 basic instructions. Moreover, when all
the different addressing modes and accessible registers are considered,
there are nearly 1000 different opcodes to control the MPU.

These instructions can be broken down into several categories. They
include data transfer, arithmetic, bit manipulation, strings, program
transfer, processor control, and VO. While we have already discussed
many, this section will introduce most of the remaining instructions.
The handful of string, processor control, and /O instructions that are
not discussed in this section will be covered in later units.

Appendix D of this course contains a detailed listing of every instruc-
tion, along with a few examples of its implementation. After reading
this Unit, turn to Appendix D and look over the explanations given
there. In the future, when you are in doubt as to exactly what a particu-
lar instruction does, look it up in Appendix D.

Use the “Unit Objectives” that follow to evaluate your progress. When
you can successfully accomplish all of the objectives, you will have
completed this Unit. You can use the “Unit Activity Guide” to keep
arecord of those sections that you have completed.

6'4 UNIT SIX

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1.

Define the two new general-purpose data transfer instructions:
XCHG and XLAT.

State the purpose of the two new flag transfer instructions: LAHF
and SAHF.

Determine the signed binary number, unpacked decimal number,
and packed decimal number from an unsigned binary number.

State how to use the arithmetic instructions: ADD, ADC, AAA,
DAA, SUB, SBB, NEG, AAS, DAS, MUL, IMUL, AAM, DIV, IDIV,
AAD, CBW, and CWD.

State how to use the bit manipulation instructions: NOT, AND,
OR, XOR, TEST, SHL/SAL, SHR, SAR, ROL, RCL, RCR.

Expanding the Instruction Set 6'5

UNIT ACTIVITY GUIDE

Read the Section on “Data Transfer Instructions.”

Complete Self-Review Questions 1-4.

Begin Reading the Section on “Arithmetic Instruc-
tions.”

Complete Self-Review Questions 5-14.

Continue Reading the Section on “Arithmetic In-
structiors.”

Complete Self-Review Questions 15-19.

Continue Reading the Section on “Arithmetic In-
structions.”

Complete Self-Review Questions 20-25.

Continue Reading the Section on “Arithmetic In-
structions.”

Complete Self-Review Questions 26-33.

Completion

6‘6 UNIT SIX

[0 Read the Section on “Bit Manipulation Instruc-
tions.”

[0 Complete Self-Review Questions 34-41.

[0 Perform the Experiment.

[Complete the Unit 6 Examination.

[0 Check the Examination Answers.

Expanding the Instruction Set 6‘7

DATA TRANSFER INSTRUCTIONS

Data transfer instructions fall into three categories: general purpose,
address object, and flag transfer. They move single bytes or words be-
tween memory and the MPU, and within the MPU. Figure 6-1 lists
the instructions. The figure is divided into three sections. The first,
Mnemonic, lists the assembler mnemonic for each instruction. Where

MNEMONIC SYNTAX RESULT
GENERAL PURPOSE

MOV reg,mem/reg Move byte or word to register
from memory or register

MOV mem/reg,reg Move byte or word to memory or
register from register

MOV mem/reg,numb Move immediate byte or word
data to memory or register

PUSH mem/reg16 Push word into stack

POP mem/reg16 Pop word off stack

XCHG reg,mem/reg Exchange byte or word between
register, and memory or register

XCHG memv/reg,reg Exchange byte or word between
memory or register, and register

XLAT AL Translate byte; BX plus AL offset
equals AL

ADDRESS OBJECT

LEA reg16,mem Load effective address of memaory

location to 16-bit register.
FLAG TRANSFER

PUSHF Push flags into stack

POPF Pop flags from stack

LAHF Load AH register from flags

SAHF Store AH register in flags

Figure 6-1

Data transfer instructions.

6'8 UNIT SIX

the mnemonic is repeated, it serves as an indication that there is more
than one way to structure the instruction operands. The next section,
Syntax, shows the operand format for each instruction. As an example,
the first MOV instruction uses a register for the destination operand
and a register or memory location for the source operand. Syntax ter-
minology for this and any similar figures in this unit is as follows:

reg = register — byte or word
regl6 = 16-bit register only

reg8 = 8-bit register only

mem = memory — byte or word
numb = immediate value

label = label — byte or word
lab8 = 8-bit label +127, — 128 bytes
AL = contents of AL register

CL = contents of CL register

1 = immediate value one
symbol “,” = separates operands
symbol “/” = literal “or”

The “Result” column of the figure gives a short summary of the action
performed by the instruction. Now let’s look at the data transfer instruc-
tion types, beginning with the “General Purpose” category.

General Purpose

Under the General Purpose category, there are five basic instructions:
MOV, PUSH, POP, XCHG, and XLAT. You are by now very familiar
with the first three. XCHG (exchange byte or word) swaps the contents
of the source and destination operands. Thus, in the instruction:

XCHG AX,DI
the contents of the AX register are placed into the DI register, and
the contents of the DI register are placed into the AX register. This
also works for all of the memory addressing modes. The instruction:

XCHG [BX+SI+5],DX
places the contents of the memory EA into the DX register, and the

contents of the DX register into the memory location specified by the
EA.

Expanding the Instruction Set 6'9

The instruction XLAT (translate-table) replaces a byte in the AL register
with a byte from a 256-byte, user-coded, translation table. Register BX
is used to hold the offset address of the first byte in the table. The
byte in the AL register is used as an index into the table. During execu-
tion, the AL register contents are replaced by the byte at the location
in the table corresponding to the original contents of the AL register.
The first byte in the table has an index of zero. As an example, assume
that the AL register contains the value 05H, and the sixth element in
the translation table contains 33H. After the XLAT instruction is exe-
cuted, the AL register will contain the value 33H.

XLAT is useful for translating characters from one code to another,
the classic example being ASCII to EBCDIC or vice versa. The term
EBCDIC stands for Expanded Binary Coded Decimal Interchange Code.
However, we will stick to ASCII for all of our programming.

Address Object

Under Address Object transfers, there are three instructions: LEA, LDS,
and LES. The instruction LEA transfers the effective address of the
source operand to the destination operand. The source operand must
be a variable name, while the destination operand must be a 16-bit
general register. Normally, you would use a Base or Index register as
the destination.

The LDS and LES instructions are used with “string” operations. These
will be described in Unit 8, along with the other string instructions.

6-10 | uniT six

Flag Transfer

The last data transfer instructions involve Flag Transfer. Recall that
PUSHF and POPF are specific stack operation instructions that are used
to store and retrieve the complete 16-bit Flag register. Two other Flag
Transfer instructions allow you to operate on just the first eight bits
(low-order byte) of the Flag register. These instructions are LAHF and
SAHF. LAHF loads the AH register with the low-order byte of the Flag
register. Because Flag register bits 1, 3, and 5 are considered to be
undefined, they can assume either a logic 1 or a logic 0 in the AH
register. The instruction SAHF reverses the operation and stores the
contents of the AH register into the low-order byte of the Flag register.
Since the contents of bits 1, 3, and 5 are considered undefined, they
can be any value and not affect the Flag register.

To help maintain microprocessor family compatibility, Intel made the
low-order byte of the 8088/8086 MPU Flag register identical to the Flag
register in the less sophisticated 8080/8085 MPU. For that reason, both
the LAHF and SAHF instructions are used primarily for converting
8080/8085 assembly language to run on an 8088/8086-based microcom-
puter. Figure 6-2 shows the Flag register bits affected by the four Flag
Transfer instructions.

;i:? S|ZyujAu PyU,C
7654321 0!

1]
}--sosofaoss FLAGs-g
I

POPF 5141312 1110 9

I

[
S c
7 0

Z UgAgUyP U
65 4 321

U= UNDEFINED; VALUE 1S INDETERMINATE
O= OVERFLOW FLAG

D= DIRECTION FLAG

I= INTERRUPT ENABLE FLAG

T= TRAP FLAG

S= SIGN FLAG

Z= ZERO FLAG

A= AUXILIARY CARRY FLAG

P= PARITY FLAG

C= CARRY FLAG

Figure 6-2
Flag storage formats.

Expanding the Instruction Set 6"1 1

Self-Review Questions

1. The PUSHF instruction can be used to store a byte of data in
the “stack.”

True/False

2. The XCHG instruction replaces a byte in the AL register with
a byte from a 256-byte code table, whose address is contained
in the BX register.

True/False

3. If you wish to update SF, ZF, AF, and CF to known values, then
you should use the flag transfer instruction

4. The LEA instruction is used to move the effective address of a
variable name into a register.

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 6-83.

6-12 | uniTsix

ARITHMETIC INSTRUCTIONS

The arithmetic instructions cover the four basic math operations: addi-
tion, subtraction, multiplication, and division. Figures 6-3A, 6-3B, and
6-3C list the instructions. Each of these let you manipulate four types
of numbers: unsigned binary, signed binary (integers), unsigned packed
decimal, and unsigned unpacked decimal. Figure 6-4 gives an example
of how these numbers are related, using a byte-sized format. Binary
numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes,
two digits per byte for packed decimal and one digit per byte for un-
packed decimal. The microprocessor always assumes that the operands
specified in an arithmetic instruction contain data that represent valid
numbers for the type of instruction being performed. Invalid data may
produce unpredictable results.

MNEMONIC SYNTAX RESULT
ADDITION

ADD reg,mem/reg Add byte or word memory or
register to register

ADD mem/reg,reg Add byte or word register to
memory or register

ADD mem/reg,numb Add immediate byte or word data
to memory or register

ADC reg,mem/reg Add with carry byte or word
memory or register to register

ADC mem/reg,reg Add with carry byte or word
register to memory or register

ADC mem/reg,numb Add with carry immediate byte or
word data to memory or register

INC mem/reg Add one to byte or word memory
or register

AAA ASCII adjust for addition; AL
register

DAA Decimal adjust for addition; AL
register

Figure 6-3A

Arithmetic instructions, addition.

Expanding the Instruction Set 6'1 3

MNEMONIC | SYNTAX RESULT
SUBTRACTION
sus reg,mem/reg Subtract byte or word memory or
register from register
suB mem/reg,reg Subtract byte or word register
from memory or register
suB mem/reg,numb Subtract immediate byte or word
data from memory or register
SBB reg.mem/reg Subtract with borrow byte or
word memory or register from
register
SBB mem/reg,reg Subtract with borrow byte or
word register from memory or
register
SBB mem/reg,numb Subtract with borrow immediate
byte or word data from memory or
register
DEC mem/reg Subtract one from byte or word
memory or register
NEG mem/reg Compute 2's complement byte or
word memory or register
CMP reg,mem/reg Compare byte or word memory or
register with register
CMP mem/reg,reg Compare byte or word register
with memory or register
CMP mem/reg,numb Compare immediate byte or word
data with memory or register
AAS ASCIl adjust for subtraction; AL
register
DAS Decimal adjust for subtraction;
AL register
E—— —ﬁ_ === i ===
Figure 6-3B

Arithmetic instructions continued, subtraction.

6'1 4 UNIT SIX

MNEMONIC

SYNTAX

L RESULT

MULTIPLICATION

MUL

IMUL

AAM

mem/reg

mem/reg

Muttiply unsigned byte (AL) or
word (AX) with memory or
register; store results in AX

(byte) or DX/AX (word)

Integer (signed) multiply byte

(AL) or word (AX) with memory or
register; store results in AX

{byte) or DX/AX (word)

ASCII adjust for multiply; AL
register

DIVISION

DIv

IDIV

mem/reg

mem/reg

Divide unsigned byte (AL,
extension in AH) or word (AX,
extension in DX) with memory or
register; store byte results

AL = quotient, AH = remainder;
store word results AX = quotient,
DX = remainder

Integer (signed) divide byte (AL,
extension in AH) or word (AX,
extension in DX) with memory or
register; store byte results

AL = quotient, AH = remainder;
store word results AX = quotient,
DX = remainder

ASCII adjust for division, AL
register

Convert byte in AL register to
word in AX register using sign
extension

Convert word in AX register to
doubleword in DX/AX registers
using sign extension

Figure 6-3C

Arithmetic instructions continued,
multiplication and division.

Expanding the Instruction Set 6'1 5

vox [omparen [oisonen T semen Tuenocen [e
07 00000111 7 +7 7 7
89 10001001 137 -119 invalid 89
C5 11000101 197 -59 invalid invalid
p -
Figure 6-4

Arithmetic interpretation of 8-bit numbers.

Unsigned binary numbers use all of the data bits to determine the
number’s magnitude. The value range for an 8-bit number is 0 through
255, while the range for a 16-bit number is 0 through 65,535. Unsigned
binary numbers can be used in addition, subtraction, multiplication,
and division operations.

Signed binary numbers (integers) use the high-order (most significant)
bit to specify the number’s sign: 0 = positive and 1 = negative. Nega-
tive integers are represented in two’s complement notation. Since the
high-order bit is used for a sign, the range for an 8-bit integer is —128
through +127; 16-bit integers range from —32,768 through + 32,767.
The value zero always has a positive sign. Only the multiplication and
division operations provide special instructions to handle integers. Ad-
dition and subtraction instructions assume that integers do not exist.
However, that doesn't mean you can’t add and subtract integers. You
just treat them as unsigned numbers, and then use the appropriate
“flags” to interpret the result. This will be covered in more detail when
the arithmetic instructions are described.

6'1 6 UNIT SIX

Packed decimal numbers are stored as unsigned byte quantities. The
byte is treated as having one decimal digit in each half-byte (four bits
per half-byte); the digit in the high-order half-byte is the most signifi-
cant digit. The range of a packed decimal number is 0 to 99. Addition
and subtraction are performed in two steps. First, an unsigned binary
instruction is used to produce an intermediate result in register AL.
Then an adjustment operation is performed to change the value in the
AL register to a final correct packed decimal result. When we discuss
the decimal adjust for addition instruction, we will go into packed
decimal operation in more detail. There is no provision for multiplying
or dividing packed decimal numbers.

Unpacked decimal numbers are also stored as unsigned byte quantities.
The magnitude of the number is determined from the low-order half-
byte. The high-order half-byte must be zero for multiplication and divi-
sion; however, it can contain any value for addition and subtraction.

Arithmetic on unpacked decimal numbers is performed in two steps
for addition, subtraction, and multiplication. First, an unsigned binary
instruction is used to produce an intermediate result in the AL register.
Then an adjustment is made on the value in the AL register to produce
the correct unpacked decimal number. Division is performed in essen-
tially the same manner, except that after the value in the AL register
is adjusted, a second unsigned binary division must be performed to
produce the correct result. Since the instruction that is used to adjust
the value in the AL register is the ASCII adjust instruction, we will
cover unpacked decimal arithmetic in more detail when we describe
the ASCII adjust instruction.

Recall from our discussion of jumps that arithmetic instructions post
certain characteristics of the result of the operation to six flags. The
various instructions affect the flags differently. While they generally
follow the rules set down earlier, there are some exceptions. We will
cover these exceptions when we describe the individual arithmetic in-
structions. Note that when we refer to a flag being set, reset, or updated,
we will use the following abbreviations:

Auxiliary Carry Flag — AF
Carry Flag — CF

Overflow Flag — OF
Parity Flag — PF

Sign Flag — SF

Zero Flag — ZF

Expanding the Instruction Set 6'1 7

Addition

You've already used the instruction ADD to add two unsigned binary
numbers. As Figure 6-3A shows, you can use the ADD instruction to
add words to words, bytes to bytes, and immediate values to bytes
or words. The sum is always stored in the destination operand. While
the ADD instruction updates AF, CF, OF, PF, SF, and ZF; CF and ZF
are generally the only flags you are interested in when you are adding
unsigned binary numbers.

As we mentioned earlier, there is no special signed number ADD in-
struction. If you are working with signed numbers, then you must rely
on the flags to determine the result. The two primary flags of interest
are SF and OF. SF reflects the value of the high-order, or sign, bit
(bit 7 for byte add and bit 15 for word add) of the result. Thus, if
SF is 0 the number is positive, while a 1 would indicate a negative
number. OF indicates whether the result of the add operation produced
a value that was out of the range of numbers allowed in the destination:
greater than +127 or + 32,767, or less than — 128 or — 32,768, for byte
and word values respectively. Naturally, if OF is set, SF is invalid,
since the sign bit no longer contains the sign of the number.

Generally, signed arithmetic is used as a test prior to a conditional
jump instruction. Therefore, depending on the specific jump, the micro-
processor would, after a signed add operation, test: SF, OF, SF XOR
OF, or (SF XOR OF) OR ZF. One thing you must keep in mind when
you are performing a signed math operation is that the microprocessor
will only recognize negative numbers in their 2’s complement form.
The assembler will automatically make the conversion for you if the
value is part of the instruction. On the other hand, if the negative value
is introduced while the program is running, then you must handle the
conversion. Just don’t make the mistake of thinking that you can make
a positive binary number negative by simply changing the sign bit.
While +19H equals 000011001B, —19H does not equal 100011001B.
You must take the 2’s complement of the positive value. Thus, if +19H
equals 00011001B, then — 19H must equal 11100111B, the 2’s comple-
ment.

6'1 8 UNIT SIX

You can handle the problem of negative numbers in two ways. Either
you make the adjustment before introducing the number to the MPU,
or you can introduce the positive equivalent and then have the MPU
make the conversion. If you choose the latter method, the instruction
you should use is NEG (negate). The negate instruction essentially sub-
tracts the destination operand from zero and returns the result to the
destination operand. What this means is that negating a number will
produce its 2’s complement, effectively reversing the sign of the
number. If the number is zero, it remains zero, but CF is cleared to
indicate that the operation occurred. If the number is any value other
than zero, CF is set. Attempting to negate a byte containing —128 or
a word containing -—32,768 again causes no change to the number;
but in this case, OF is set to indicate the operation occurred. OF is
cleared after negating any other number. Except for these two cases,
the condition code flags are updated by the negate operation.

In addition to signed and unsigned binary numbers, you can use the
ADD instruction to add unpacked decimal numbers, often called Binary
Coded Decimal (BCD) numbers. A special instruction, AAA (ASCII Ad-
just for Addition), provides the necessary decoding, or adjustment. The
term ASCII adjust may be misleading. Actually, the only ASCII charac-
ters that can be used are the numbers 0 through 9, and then only the
low-order four bits of the byte are saved. This results in a BCD number,
hence the reason for including unpacked BCD number adjustment with
the instruction. Because of the way the microprocessor handles the
AAA instruction, the data to be adjusted must reside in the AL register.
As a result, only byte-wide add operations should precede the adjust-
ment. The AAA instruction is performed in the following manner:

1. If the low-order four bits of the AL register are greater
than 9, or AF is 1, add 6 to the AL register, add 1 to
the AH register, and set AF to 1.

2. Clear the high-order four bits of the AL register.

3. Update CF to the same value in AF.

Expanding the Instruction Set 6'1 9

Notice that the AH register is used to store any overflow from the add
and adjust operation. For that reason, you must make sure the AH regis-
ter has been cleared before you begin any unpacked decimal operation.
As an example of BCD addition, consider the following sequence of

instructions:
SUB AX, AX ;Zero the AX register
ADD AL,3 ;Load the first BCD
ADD AL.5 ;Add the second BCD
AAA ;Unpacked decimal adjust
ADD AL,B ;Add the third BCD
AAA ;Unpacked decimal adjust
ADD AL.7 :Add the fourth BCD
AAA ;Unpacked decimal adjust

The first instruction clears the AX register.

AH = 0000 0000 AL = 0000 0000
The next instruction adds 3 to the AL register.

AH = 0000 0000 AL = 0000 0011

The third instruction adds 5 to the AL register. Thus, the AL register
now contains the number 8. Since there was no carry into the fifth
bit of the AL register, AF equals zero. By the same token, there was
no carry out of the last bit of the AL register, so CF is zero.

AH = 0000 0000 AL = 0000 1000
AF = 0 CF =0

The fourth instruction adjusts the contents of the AL register to produce
an unpacked decimal. Because the low-order four bits of the register
are less than 0AH, AF is zero, CF is zero, and the high-order four bits
of the register are zero; there is no immediate indication that the instruc-
tion was executed. Nothing has changed.

AH = 0000 0000 AL = 0000 1000
AF = 0 CF =10

6'20 _ UNIT SIX

The fifth instruction adds 8 to the AL register. Therefore, the AL register
now contains the number 16 (10H). In addition, there was a carry into
the fifth bit of the AL register. Thus, AF is set to one. On the other
hand, there was no carry out of the last bit of the AL register, so CF
is still zero.

AH = 0000 0000 AL = 0001 0000
AF = 1 CF =0

The sixth instruction again adjusts the contents of the AL register to
produce an unpacked decimal. While the low-order four bits of the
register are still less than 0AH, AF is now 1. This indicates that the
AL register contents are no longer a valid BCD. Therefore, 6 is added
to the AL register to make the low-order four bits a valid BCD. Then
the high-order four bits are cleared to make the contents of the AL
register a single BCD. Next, one is added to the AH register to represent
the 10’s digit of the BCD. Finally, both AF and CF are set to one. Al-
though AF was already one in this example, the instruction is designed
to accommodate the situation where the low-order four bits of the AL
register are greater than 9 and AF is zero. Setting CF to one indicates
that the 10’s digit (the AH register) was incremented. Decode the con-
tents of the AH and AL registers and you will find that they contain
the decimal number 16, the sum of 3 plus 5 plus 8.

AH = 0000 0001 AL = 0000 0110
AF =1 CF =1

Expanding the Instruction Set 6'21

The seventh instruction adds 7 to the AL register. Therefore, the AL
register now contains the number 13 (0DH). However, there was no
carry into the fifth bit or out of the last bit, so both AF and CF are
cleared, or zero. The AH register still contains the BCD one for the
previous AAA operation.

AH = 0000 0001 AL = 0000 1101
AF =0 CF =0

The last instruction again adjusts the contents of the AL register. Be-
cause the low-order four bits of the register are now greater than 9,
the instruction adds 6 to the register to make these bits a valid BCD.
Then the four high-order bits are cleared. Next, one is added to the
AH register to represent the decimal “carry” into the 10’s digit. Finally,

both AF and CF are set to one.
AH = 0000 0010 AL = 0000 0011
AF = 1 CF =1

The four numbers added to the AL register in the preceding eight in-
structions totaled 23. Decode the BCD contents of the AH and AL regis-
ters and you will find the numbers 2 and 3 respectively. They represent
the decimal number 23.

Examine the 7-bit ASCII Table in Figure 6-5, on Pages 6-22 and 6-23.
(This is a copy of the table shown earlier in Unit 2.) Column 3 lists
the decimal numbers.

6'22 UNIT SIX

COLUMN | 0@ 1@ 2™ 3 4 5 [7
ROW | [BITS 765 p 000 (001 | 010 | 011 | 100 | 101 | 110 | 111
0 _oog' NUL DLE gp 0 @ P ' P
1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 . 2 B R b r
3 0011 ETX DC3 # 3 c s c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E u) u
6 0110 ACK SYN & 6 F v t v
7 0111 BEL ETB ' 7 G w g w
8 1000 B8S CAN (8 H X h X
9 1001 HT EM) 9 I Y i y
10 1010 LF sus . J z j z
1 101 vT ESC + 2 K [k {
12 1100 FF FS ; < L I ;
13 1101 CR GS - = M] m }
14 1110 SO RS > N M n ~
15 1111 sl us / o =)) DEL
Figure 6-5A

Table of 7-bit American Standard Code

for Information Interchange.

Expanding the Instruction Set 6'23

NOTES:

(1) Depending on the machine using this code, the symbol may be a
circumflex, an up-arrow, or a horizontal parenthetical mark.

(2) Depending on the machine using this code, the symbol may be an
underline, a back-arrow, or a heart.

(3) Explanation of special control functions in columns 0, 1, 2, and 7.

NUL Null DLE Data Link Escape

SOH Start of Heading DC1 Device Control 1

STX Start of Text DC2 Device Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENQ Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell (audible signal) ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation EM End of Medium
(punched card skip) SUB Substitute

LF Line Feed ESC Escape

VT Vertical Tabulation FS File Separator

FF Form Feed GS Group Separator

CR Carriage Return RS Record Separator

SO Shift Out US Unit Separator

SI Shift In DEL Delete

SP Space (blank)

Figure 6-5B
Continuation of the table of
7-bit American Standard Code
for Information Interchange.

6'24 _ UNIT SIX

Assuming the eighth bit in the ASCII code is a zero, then the 8-bit
code for the number 7 is 0011 0111B. Perform an ASCII adjust for
addition (AAA) operation on that code and the result is 0000 0111B —
the BCD equivalent of the number 7. This would suggest that you can
add ASCII numbers together, adjust the result, and come up with the
BCD equivalent. And you can. For example, consider the following
instructions:

SUB AX,LAX ;Zero the AX register

IN AL,25 ;Get ASCII number at port 25
MOV BL,AL ;Save ASCII number in BL

IN AL,25 ;Next ASCII number at port 25
ADD AL,BL ;Add ASCII numbers

AAA ;Adjust sum for BCD

Here we have a set of instructions that are loading ASCII numbers from
a peripheral device, adding the numbers together, and adjusting the
sum to produce the BCD equivalent. The first instruction, as before,
clears the AX register to make sure we don’t add some unknown value
to our numbers.

AH = 0000 0000 AL = 0000 0000

The second instruction inputs the first byte of data into the AL register.
Assume it's the ASCII code for the number 7. We will be covering
the I/O instructions in detail later in the course. So for now, let’s just
say that the instruction IN inputs a byte of data into the AL register.
The immediate value, in this case 25, indicates the I/O port that contains
the data.

AH = 0000 0000 AL = 0011 0111
The third instruction saves the first ASCII number in the BL register.

AH = 0000 0000 AL 0011 0111
BL = 0011 0111

The fourth instruction gets the second ASCII number at I/O port 25.
Assume this number is 6.

AH = 0000 0000 AL = 0011 0110
BL = 0011 0111

Expanding the Instruction Set 6"25

The fifth instruction adds the number in the BL register to the number
in the AL register, and stores the sum in the AL register. Notice that
there was no carry into the fifth bit and no carry out of the last bit.
Therefore, both AF and CF are zero.

AH = 0000 0000 AL = 0110 1101
BL 0011 0111
AF =0 CF =0

The last instruction adjusts the contents of the AL register. Because
the low-order four bits of the register are greater than 9, the instruction
adds 6 to the register to make these bits a valid BCD. Then the four
high-order bits are cleared, since we are now dealing with an unpacked
decimal number. Next, one is added to the AH register to represent
the decimal “carry” into the 10’s digit. Finally, both AF and CF are
set to one to indicate that a carry into the AH register did occur. Decode
the contents of the AH and AL registers and you will find the numbers
1 and 3. They represent the decimal number 13, which is the sum
of the numbers 7 and 6.

AH = 0000 0001 AL = 0000 0011
BL 0011 0111
AF = 1 CF = 1

The four steps of ASCII Adjust for Addition apply whether you are
adding BCD numbers or ASCII coded numbers. After the AAA instruc-
tion has been executed, only two flags remain valid. They are AF and
CF. The other four condition code flags are considered undefined, and
thus cannot be relied upon to regulate a conditional instruction.

The last number type that can be used with the ADD instruction is
the packed decimal. The number is similar to an unpacked decimal,
only now the four high-order bits contain a second or high-order digit.
Of course, both digits are coded in BCD.

Earlier, we needed both the AH and AL registers to represent the
number 23 in unpacked decimal.

AH = 0000 0010 AL = 0000 0011

You only need one 8-bit register to represent a two-digit number, such
as 23, in packed decimal.

AL = 0010 0011

6'26 UNIT SIX

Naturally, adding two packed decimal numbers together could pose
a problem. However, a special instruction, DAA (Decimal Adjust for
Addition), provides the necessary decoding or adjustment. Remember
though, DAA is used only with packed decimal numbers. If you wish
to adjust an unpacked decimal number, use the AAA instruction.

Because of the way the microprocessor handles the DAA instruction,
the data to be adjusted must reside in the AL register. As a result,
only byte-wide add operations should precede the adjustment. The
DAA instruction is performed in the following manner:

1. If AF is one, or the low-order four bits of the AL register
are greater than 9, then add 06H to the AL register and
set AF to one.

2. If CF is one, or the high-order four bits of the AL register
are greater than 9, then add 60H to the AL register and
set CF to one.

The operation is similar to the AAA instruction, within the boundaries
set by the two previous conditions. As an example, consider the follow-
ing sequence of instructions:

MOV AL,29H ;Load the first packed decimal
MOV BL,4SH ;Load the second packed decimal

ADD AL,BL ; Add the numbers

DAA ;Packeddecimal adjust

MOV BL,34H ;Load the third packed decimal
ADD AL,BL ; Add the numbers

DAA :Packed decimal adjust

The first instruction loads the first packed decimal into the AL register.
The AH register isn’'t involved in the DAA operation, so you don’t
have to clear it. You may have noticed that the hexadecimal based
number system was used to specify the packed decimal. This is because
it graphically shows the two “decimal” numbers being entered, since
each hex number occupies four bit locations in a byte. Any other
number system would work, but it would be difficult to interpret at
a glance. For example, both decimal 41 and binary 0010 1001 are the
equivalent of packed decimal 29.

AL = 0010 1001

Expanding the Instruction Set 6'27

The second instruction loads packed decimal 49 into the BL register.

AL = 0010 1001
BL = 0100 1001

The third instruction adds the contents of the BL register to the AL
register. Because there was a carry from the fourth bit to the fifth bit,
AF is set to one. On the other hand, there was no carry out of the
last bit, so CF is cleared to zero.

AL = 0111 0010

BL = 0100 1001
AF =1
CF =0

The fourth instruction adjusts the contents of the AL register to produce
two valid packed decimal numbers. First, the validity of the low-order
number is checked. Since AF is set, 06H must be added to the register
to make the low-order number valid.

0111 0010
+ 0000 0110
0111 1000

Next, the validity of the high-order number is checked. The high-order
four bits are less than 0AH, and CF is zero, so the high-order number
must be valid. Therefore, no further action is taken.

AL = 0111 1000

BL = 0100 1001
AF = 1
CF =0

The fifth instruction loads packed decimal 34 into the BL register. Since
the flags are unaffected by the MOV instruction, AF and CF stay the
same.

AL = 0111 1000
BL 0011 0100
AF 1
CF =0

6"28 _ UNIT SIX

The sixth instruction adds the contents of the BL register to the AL
register. There are no carries, so AF and CF are cleared to zero.

AL = 1010 1100

BL = 0011 0100
AF =0
CF =0

The last instruction, DAA, again adjusts the contents of the AL register
to produce two valid packed decimal numbers. First, the validity of
the low-order number is checked. This time, AF is zero; however, the
four low-order bits are greater than 9. Therefore, 06H is added to the
register, to make the low-order number valid.

1010 1100
+ 0000 0110
1011 0010

Notice that the adjustment process produced a carry into the fifth bit.
This sets AF to one. It also increases the value of the high-order number
by one. The next step in the adjustment process is to check the validity
of the high-order number. CF is still zero; however, the four high-order
bits are greater than 9. Therefore, 60H is added to the register to make
the high-order number valid.

1011 0010

+ 0110 0000

CARRY— 1 0001 0010

This last operation produced a carry out of the eighth bit of the register.
Thus, CF is set to one.

AL = 0001 0010

BL = 0011 0100
AF =1
CF =1

Expanding the Instruction Set 6'29

Decode the AL register and you find it contains the packed decimal
12. Obviously, 29 plus 49 plus 34 does not equal 12. Rather, it equals
112. However, if you consider the CF an indicator of a carry into the
100’s digit, then with CF set to one, the sum of the packed decimal
numbers does indeed equal 112. Since the only indication of a carry
into the 100’s digit is the Carry flag, the maximum number that can
be represented after a packed decimal adjust is 198 (99 plus 99).

As with the AAA instruction, AF and CF are the principle flags of
interest in the DAA instruction. However, the DAA instruction will
also update PF, SF, and ZF. OF is the only flag that remains undefined.

The last instruction to be discussed under the Addition is ADC (Add
with Carry). It operates just like its counterpart ADD instruction, with
one exception. After the two numbers are added together, the value
of the Carry flag (before this addition) is then added to the sum; hence
the term “add with carry.” For example, assume the BL register contains
the number 25H, the DL register contains the number 50H, and CF
is set to one. Execute the instruction:

ADC BL,DL ;Add bytes with carry

and the following steps occur:

0010 0101 = BL

+ 0101 0000 = DL
0111 0101 = BL
+ 1 = CF

0111 0110 = BL

The contents of the DL register are added to the contents of the BL
register, and the sum is stored in the BL register. Then the value of
CF is added to the contents of the BL register and the sum is again
stored in the BL register.

The beauty of the add with carry instruction is that you can easily
add numbers that are larger than 16 bits in length. For example, suppose
you wanted to add 2,097,151 to 1,050,640. Neither of these numbers
will fit into a 16-bit register; the highest number the register can hold
is 65,535. But you can fit each number into two 16-bit registers. Let’s
examine the process.

6'30 UNIT SIX

To keep the explanation simple, we’ll first convert the numbers into
hexadecimal:

2,097,151 = 001F FFFFH
1,050,640 = 0010 0810H

The following program loads the numbers and then performs the add-
with-carry operation.

MOV AX,OFFFFH ;Load the low-word of the first number
MOV BX,001FH ;Load the high-word of the first number
MOV CX,0810H ;Load the low-word of the second number
MOV DX,0010H ;Load the high-word of the second number
ADD AX,CX ;Add the low-words

ADC BX,DX ;Add the high-words and any carry

The first four instructions load the numbers into the registers: first
number into AX and BX, second number into CX and DX. The fifth
instruction then adds the low-word of the second number to the low-
word of the first number, and stores the sum in the AX register. Since
there was a carry out of the high bit, CF is set.

1111 1111 1111 1111 = AX
+ 0000 1000 0001 0000 = CX
CARRY — 1 0000 1000 0000 1111 = AX

The ADD instruction was used in this step for two reasons. First, there
was no need to accommodate a carry into the number. Second, the
status of the Carry flag was unknown. If the ADC instruction had been
used, it would have been necessary to also use the CLC instruction
to make sure CF was cleared before the ADC instruction was executed.

Expanding the Instruction Set 6'31

The last instruction added the high-word of the second number to the
high-word of the first number and stored the sum in the BX register.
Then it added the contents of CF to the contents of the BX register
and again stored the sum in the BX register. Here, ADC was used, since
it is important that any carry from the previous addition be added to

this number.
0000 0000 0001 1111 = BX
+ 0000 0000 0001 0000 = DX
0000 0000 0010 1111 = BX

+ 1 = CF
0000 0000 0011 0000 = BX

Thus, the sum of your two-word add resides in registers AX and BX.
Decoded, the decimal number is 3,147,791. While this example used
unsigned binary math, it will also work for signed binary, unpacked
decimal, and packed decimal.

6-32 | UNIT SIX

Self-Review Questions

10.

11.

12,

13.

14.

If the decimal equivalent of the unsigned binary number is 25,
the signed binary number is

If the decimal equivalent of the 8-bit unsigned binary number
is 153, the signed binary number is

If the decimal equivalent of the unsigned binary number is 8,
the unpacked decimal number is

If the decimal equivalent of the unsigned binary number is 103,
the packed decimal number is

The largest negative decimal number that can be represented in
eight binary bits is

The instruction for adding signed binary words between registers
is

After you add two unpacked decimal numbers, you must adjust
the result with the instruction.

For a decimal adjust operation, the operand must reside in the
register.

In unpacked decimal adjusts, the 10’s digit is stored in the AH
register; while in packed decimal adjusts, the 100’s digit is stored
in the

The instruction lets you add multiword (or byte)
unsigned binary numbers.

Expanding the Instruction Set 6'33

Subtraction

You've already used the instruction SUB to subtract one unsigned bi-
nary number from another. As previously indicated in Figure 6-3B (Page
6-13), you can use the SUB instruction to subtract words from words,
bytes from bytes, and immediate values from words or bytes. The differ-
ence is always stored in the destination operand. While the SUB in-
struction updates AF, CF, OF, PF, SF, and ZF; CF and ZF are generally
the only flags you are interested in when subtracting unsigned binary
numbers.

As with signed addition, there is no specific signed number subtraction
instruction. If you are working with signed numbers, then you must
rely on the flags to determine the result. The two primary flags of inter-
est are SF and OF. SF reflects the sign of the high-order bit of the
result. OF indicates whether the result of the “add” operation over-
flowed into the high-order bit. Remember, in a subtraction operation,
the “2's complement” of the source is “added” to the destination
operand. Thus, if OF is set, SF is invalid, since the sign bit no longer
contains the sign of the number.

In addition to signed and unsigned binary numbers, you can use the
SUB instruction to subtract packed and unpacked decimal numbers.
The AAS (ASCII Adjust for Subtraction) instruction is used to adjust
the difference after an unpacked decimal subtraction. As with the AAA
instruction, the number must reside in the AL register. Therefore, you
should only precede this instruction with byte-wide subtraction opera-
tions. The AAS instruction is performed in the following manner:

1. If the low-order four bits of the AL register are greater
than 9, or AF is one, subtract 6 from the AL register,
subtract one from the AH register, and set AF to one.

2. Clear the high-order four bits of the AL register.
3. Update CF to the same value in AF.

Notice that the AH register is used to supply any borrow from the
subtract and adjust operation. For that reason, you must make sure
you know what value is stored in the AH register prior to the adjust
operation. Otherwise, you won’t have a means of determining the valid-
ity of the result.

6‘34 UNIT SIX

The three steps of ASCII Adjust for Subtraction apply whether you
are subtracting BCD numbers or ASCII encoded numbers. After the AAS
instruction has been executed, only two flags remain valid: AF and
CF. The other four condition code flags are undefined, and cannot be
relied upon to regulate a conditional instruction.

The DAS (Decimal Adjust for Subtraction) instruction is used to adjust
the difference after a packed decimal subtraction. Since the number
must reside in the AL register, you should only precede this instruction
with byte-wide subtraction operations. The DAS instruction is per-
formed in the following manner:

1. If AF is one or the low-order four bits of the AL register
are greater than 9, subtract 06H from the AL register and
set AF to one.

2. If CF is one or the high-order four bits of the AL register
are greater than 9, subtract 60H from the AL register and
set CF to one.

The operation is very similar to the DAA instruction. After execution,
all of the condition code flags are updated, except for OF. Its status
is undefined.

The SBB (Subtract with Borrow) instruction carries the simple subtract
instruction one step further. After the two numbers are subtracted, the
value of CF (in this case it's considered the borrow flag) is subtracted
from the result. Thus, like its counterpart the ADC instruction, SBB
lets you subtract more than one number from another because it incor-
porates a previous “borrow” into the calculation. For that same reason,
you can also use SBB to subtract numbers that are larger than 16 bits
in length. This would be similar in operation to the ADC example given
earlier. Since the subtract with borrow instruction is an extension of
the simple subtract instruction, it too can be used with signed and
unsigned binary numbers, and packed and unpacked decimal numbers.

Expanding the Instruction Set 6'35

The last three instructions that fit in the category of “subtraction” are
compare, decrement, and negate. Recall that CMP (Compare) subtracts
the source operand from the destination operand, and uses the result
to update the condition code flags. However, the operand values are
not affected by the operation.

The DEC (Decrement) instruction subtracts one from the destination
operand. All of the condition code flags except CF are updated by this
instruction. CF is unaffected by the decrement instruction, and thus
retains its previous state.

Last of the subtraction instructions is NEG (Negate). It was described
earlier in this unit.

Self-Review Questions

15. The instruction for subtracting binary words between registers
is

16. The AAS instruction provides the necessary adjustment to allow
you to subtract one ASCII number code from another.

True/False

17. The instruction lets you subtract more than one
multibyte operand from another.

18. The compare instruction subtracts the source operand from the
destination operand, and stores the result in the destination
operand.

True/False

19. Negating a number produces its 2’s complement.
True/False

6'36 UNIT SIX

Multiplication

The multiplication instructions expand your capabilities as a program-
mer. You no longer have to create complex program loops in order
to multiply one number by another; simply load the data and execute
the appropriate multiply instruction. The multiplication instructions
are listed in Figure 6-3C (Page 6-14).

The MUL (Multiply) instruction is used for multiplying unsigned bi-
nary values. For byte-sized values, the source operand (the multiplier)
can be an 8-bit register or a “defined byte” memory location (variable).
The byte value being multiplied (the multiplicand) must, by default,
reside in the AL register. The product is returned as a 2-byte value,
with the AH register holding the high byte and the AL register holding
the low byte. '

Word-sized values are multiplied in a similar fashion. The source
operand can be a 16-bit general register or a “defined word” memory
location. The word value being multiplied must reside in the AX regis-
ter. The product is returned as a 2-word value, with the DX register
holding the high word and the AX register holding the low word. To
get an idea of how the MUL instruction can be used to multiply two
words, examine the following instructions:

MOV AX,5632H ;Load the multiplicand
MOV CX,0124H ;Load the multiplier
MUL CX ;Multiply the registers

The first two instructions load the multiplicand and multiplier into
the AX and CX registers. The multiplicand must reside in the AX regis-
ter. The multiplier, on the other hand, can reside almost anywhere.
However, if you use the DX register (AH for byte values), the high
word (byte) will replace the multiplier value in the register.

AX = 0101 0110 0011 0010
CX = 0000 0001 0010 0100

The last instruction multiplies the CX register contents times the AX
register contents, and stores the low word of the product in the AX
register and the high word of the product in the DX register.

AX = 0101 0001 0000 1000
CX = 0000 0001 0010 0100
DX = 0000 0000 0110 0010

Expanding the Instruction Set 6'37

Thus, the result of multiplying 0124H times 5632H equals 00625108H.
Decoded into decimal, 292 times 22,066 equals 6,443,272.

If the result of the multiplication operation produces a zero in the
upper-half of the product (AH register for byte multiply and DX register
for word multiply), CF and OF are cleared; otherwise, they are set.
In the previous example, CF and OF would have been set. The other
four condition code flags are undefined for an unsigned binary multiply
operation.

Unlike the addition and subtraction instruction set, the multiplication
instruction set has a specific instruction for integer (signed binary) mul-
tiplication (IMUL). Generally, integer multiplication operates in the
same manner as unsigned multiplication. There are three exceptions
though. First, for byte operations, both numbers must fall in the range
+127 to —128; while for word operations, both numbers must fall
in the range +32,767 to —32,768. Second, if the high-order half of
the product is zero, the high-order register is automatically sign ex-
tended. For example, multiply 3 times 5 and the AL register will contain
the value 00001111B. The AH register contains zero, which happens
to be the sign of the AL register.

AH = 0000 0000 AL = 0000 1111

On the other hand, if you multiply —3 times 5, the AL register will
contain the value 11110001B, the 2’s complement of 15. The AH register
is again zero, but because of the sign extension rule, its bits are changed
from zeros to ones.

AH = 1111 1111 AL = 1111 0001

The sign of the AL register is extended into the AH register whenever
the AH register is zero after an integer byte multiplication. This is also
true for integer word multiplication, with the DX register receiving
the sign extension.

The third difference between signed and integer multiplication is in
the use of the two condition code flags CF and OF, If the high-order
half of the result is the sign extension of the low-order half, both CF
and OF are cleared. On the other hand, if the high-order half contains
a valid number, CF and OF are set. The other four condition code flags
are undefined for integer multiplication.

6'38 UNIT SIX

The last instruction in the multiplication instruction set is AAM (ASCII
Adjust for Multiply). It lets you correct the result of a previous multipli-
cation of two valid unpacked decimal operands. Unlike the AAA and
AAS instructions, AAM requires that only valid unpacked BCD num-
bers be used in the preceding multiply instruction. This means that
you can multiply 06H times 04H and obtain a valid number after the
adjustment, but you cannot multiply 36H (ASCII code for decimal 6)
times 04H and obtain a valid number after adjustment. If you wish
to use ASCII coded numbers, you must first clear, or mask, the four
high-order bits of the ASCII code. This is generally done with the logical
AND instruction, as was the case when we masked a record field in
the last unit. For example, suppose the AL register contains the ASCII
code 36H and the BL register contains the value 04H. Before you can
multiply and adjust the result, you must use the instruction:

AND AL,OFH

which leaves the AL register containing 06H. Now the values in AL
and BL can be multiplied together, and the result adjusted with the
AAM instruction.

The AAM instruction operates as follows:

1. Divide the AL register contents by 0AH. Store the quo-
tient in the AH register. Store the remainder in the AL
register.

2. Set the condition code flags in the following manner:

CF, OF, and AF undefined.

PF based on the AL register contents.

SF based on the high-order bit of the AL register.
ZF based on the AL register contents.

As an example, suppose that the AL register contains 07H and the
BL register contains 09H. After the sequence of instructions:

MUL BL ;AL multiplied by BL, product in AL
AAM ;ASCIT adjust the product in AL

the AH register will contain 06H and the AL register will contain 03H.
The sequence of events occurred in this manner: First, the MUL instruc-
tion produced the results:

AH = 0000 0000 AL = 0011 1111

Expanding the Instruction Set 6"39

Then the AAM instruction divided the contents of the AL register by
0AH, stored the quotient in the AH register and the remainder in the
AL register, and set the appropriate flags. The flags were set in the
following manner:

CF — Undefined

OF — Undefined

AF — Undefined

SF — High-order bit of AL is 0, Sign cleared to 0
ZF — AL register is non-zero, Zero cleared to 0
PF — Two 1-bit in AL, Parity set to 1

Had the result of the multiplication equaled 09H or less, the AH register
would contain zero and the AL register would contain the result.

Self-Review Questions

20. The instruction for multiplying two unsigned binary words is

21. The instruction for multiplying two signed binary bytes is

22. If you multiply one word times another, the answer is stored
in the and registers.

23. Another term for signed number is

24. If you multiply the byte 2 times the byte —5, the number stored
in the AH registeris _ _ H.

25. The AAM instruction lets you adjust the result after multiplying
two ASCII encoded numbers together.

True/False

6'40 UNIT SIX

Division

Five instructions are provided in the division instruction set, as shown
in Figure 6-3C (Page 6-14). Three are directly related to division and
adjustment; the other two are sign extension operations to support
signed division.

The DIV (Divide) instruction is used for dividing unsigned binary
values. For byte-sized division, a word-sized dividend is placed in the
AX register. The byte-sized divisor (the source operand) can be located
in an 8-bit register or a “defined byte” memory location (variable).
When the instruction is executed, the quotient is returned to the AL
register and the remainder is returned to the AH register. If the quotient
exceeds the capacity of the AL register, the MPU generates a type 0
interrupt; the quotient and remainder are then considered undefined.
We’ll cover this and other interrupts later in the course. For now, we’ll
make sure all of our division operations don’t exceed the capacity of
the “quotient” register.

Word-sized division operates in a similar fashion, only this time the
dividend is doubleword-sized. The high word is stored in the DX regis-
ter and the low word is stored in the AX register. The word-sized di-
visor (the source operand) can be located in a 16-bit general register
or a “defined word” memory location. When the instruction is exe-
cuted, the quotient is returned to the AX register and the remainder
is returned to the DX register. As before, if the quotient exceeds the
capacity of its register, a type 0 interrupt is generated by the MPU.
As an example of word division, consider the following instructions:

MOV DX,068AH ;Load the dividend high—word

MOV AX,OF05H ;Load the dividend low-word

MOV CX,08ESH ;Load the divisor

DIV CX ;Perform word divide, CX is divisor

The first three instructions load the dividend and divisor. By default,
the dividend must reside in the DX and AX registers. The divisor can
reside almost anywhere. To keep the code simple, we chose the CX
register.

DX = 0000 0110 1000 1010
AX 0000 1111 0000 0101
CX = 0000 1000 1110 1001

Expanding the Instruction Set 6‘41

The last instruction divides the contents in DX and AX registers by
the contents in CX register. The quotient is stored in AX register and
the remainder is stored in DX register.

AX = 1011 1011 1110 0001
DX = 0000 0111 0011 1100
CX = 0000 1000 1110 1001

Thus, the result of dividing 068A0F05H by 08E9H is a quotient of
OBBE1H and a remainder of 073CH. All of the condition code flags
are considered undefined after a word- or byte-sized divide operation.

Like the multiplication instruction set, the division instruction set has
a specific instruction for integer (signed binary) division (IDIV). Gener-
ally, integer division operates in the same manner as unsigned division.
There are three exceptions though. First, the high bit of the dividend
and the divisor are considered the sign bit. Second, the remainder will
assume the sign of the dividend. Finally, the quotient and remainder
are treated as signed numbers with a maximum allowable range. For
byte operations, the quotient and remainder cannot exceed the range
+127 to — 128. For word operations, the quotient and remainder cannot
exceed the range +32,767 to —32,768. Should the quotient exceed
either its positive or negative range, a type 0 interrupt will be generated,
and both the quotient and remainder will be considered undefined.
All condition code flags are considered undefined for an integer divi-
sion operation.

Two other instructions in the division instruction set are used to sup-
port signed division. Essentially, they are used to extend the sign of
a number to make the number compatible with the signed division
operation. The first, CBW (Convert Byte to Word), extends the sign
of the sign of the byte in the AL register throughout the AH register.
Thus, CBW can be used to produce a double-length dividend from a
single byte prior to signed-byte division. The second sign extension
instruction is CWD (Convert Word to Doubleword). Here, the sign of
the word in the AX register is extended throughout the DX register.
Thus, CWD can be used to produce a doubleword dividend from a
single word prior to signed-word division. Neither CBW or CWD affect
the status of the condition code flags.

6-42 | unitsix

The last instruction to be covered is AAD (ASCII Adjust for Division).
This instruction is a little different from the other ASCII adjust instruc-
tions; it is executed prior to the division operation rather than after.
Thus, when you wish to divide two unpacked decimal numbers (BCD
not ASCII), you place the most significant number in the AH register
and the least significant number in the AL register. The AAD instruction
combines the two unpacked decimal numbers and places them in the
AL register as an unsigned binary value. The AAD instruction operates
as follows:

1. Multiply the contents of the AH register by 0AH.

2. Add the contents of the AH register to the AL register.
3. Store O0H in the AH register.

4. Set the condition code flags in the following manner:

CF, OF, and AF undefined.

PF based on the AL register contents.

SF based on the high-order bit of the AL register.
ZF based on the AL register contents.

As an example, suppose the AX register contains the two unpacked
decimal values 0604H. After the instruction AAD is executed, the AX
register will contain the unsigned binary value 0040H. The flags are
updated in the following manner:

CF — Undefined

OF — Undefined

AF — Undefined

SF — High-order bit of AL is 0, Sign cleared to 0
ZF — AL register is non-zero, Zero cleared to 0
PF — One 1-bit in AL, Parity cleared to 0

The next instruction after AAD should be DIV. This will produce an
unsigned binary quotient and an unsigned binary remainder, not the
unpacked decimal you might expect.

Expanding the Instruction Set 6"43

Self-Review Questions

26. If you divide a doubleword value by a word value, the dividend
must reside in the and registers.

27. The quotient from a byte divide is stored in the
register.

28. If the quotient from a word divide exceeds the capacity of the
AX register, the excess is stored in the DX register.

True/False

29. The mnemonic for an integer divide word is

30. The maximum negative remainder after an integer divide byte
operation is

31. The instruction is used to extend the sign of a
byte-sized number before the divide operation.

32. You would use the instruction to convert a word
to a doubleword.

33. The AAD instruction is performed prior to the division of two
unpacked decimal numbers.

True/False

6‘44 UNIT SIX

BIT MANIPULATION INSTRUCTIONS

The 8088/8086 MPU provides three groups of instructions for manipu-
lating bits within both bytes and words. These include logical opera-
tions, shifts, and rotates, as listed in Figures 6-6A (logicals), 6-6B
(shifts), and 6-6C (rotates). These instructions can be performed on both
register and memory operands.

Logicals

Logical instructions include the Boolean operators “not,” “and,” “inclu-
sive or,” and “exclusive or,” plus a TEST instruction that sets the condi-
tion code flags but does not alter either the source or destination
operand. Although the logical NOT does not affect the status of the
condition code flags, the flags are affected by the logical instructions
AND, OR, XOR, and TEST. The flags are updated in the following man-
ner:

OF — Cleared by the operation.

CF — Cleared by the operation.

AF — Undefined after the operation.

PF — Reflects the number of 1-bits in the destination operand
(low-order byte for word-sized operands); set to one for
an even number, cleared to zero for an odd number.

SF — Reflects the status of the most significant (sign) bit of
the destination operand.

ZF — Reflects the numeric value of the destination operand;
set to one if value is zero, cleared to zero if value not
Zero.

NOT inverts the bits to form the 1’s complement of the destination
operand. This and the other logical, Boolean, operations are fully de-
scribed and illustrated in Appendix C of this course.

AND performs the logical “and” operation between the source and des-
tination operands, and returns the result to the destination operand.
Recall that a bit in the result is set if both corresponding bits of the
original operands are set; otherwise, the bit is cleared.

Expanding the Instruction Set 6‘45

MNEMONIC l

SYNTAX

RESULT

LOGICALS

NOT

AND

AND

OR

XOR

XOR

XOR

TEST

TEST

TEST

mem/reg

reg,mem/reg

mem/reg,reg

mem/reg,numb

reg,mem/reg

mem/reg,reg

mem/reg,numb

reg,mem/reg

mem/reg,reg

mem/reg,numb

reg,mem/reg

mem/reg,reg

mem/reg,numb

Perform 1's complement of memory
or register, byte or word

Perform bitwise logical "and" of
register with memory or register,
byte or word

Perform bitwise logical “and” of
memory or register with register,
byte or word

Perform bitwise logical “and” of
memory or register with immediate
data, byte or word

Perform bitwise logical “inclusive
or" of register with memory or
register, byte or word

Pertorm bitwise logical “inclusive
or” of memory or register with
register, byte or word

Perform bitwise logical “inclusive
or” of memory or register with
immediate data, byte or word
Perform bitwise logical “exclusive
or" of register with memory or
register, byte or word

Perform bitwise logical "“exclusive
or” of memory or register with
register, byte or word

Perform bitwise logical "exclusive
or” of memory or register with
immediate data, byte or word
Perform bitwise logical “and” of
register with memory or register,
byte or word; update flags, but
not destination

Perform bitwise logical “and” of
memory or register with register,
byte or word; update flags, but
not destination

Perform bitwise logical "and” of
memory or register with immediate
data, byte or word; update flags,
but not destination

Figure 6-6A

Bit manipulation instructions, logicals.

6"46 UNIT SIX

MNEMONIC

SYNTAX

RESULT

SHIFTS

SHL/SAL

SHL/SAL

SHR

SHR

SAR

SAR

mem/reg,1

mem/reg,CL

mem/reg,1

mem/reg,CL

mem/reg, 1

mem/reg,CL

Shift logical/arithmetic left,

byte or word, memory or register
1 bit; shift in low-order zero bit
Shift logical/arithmetic left,

byte or word, memory or register
number of bits given by CL
register; shift in low-order zero
bits

Shift logical right, byte or word,
memaory or register 1 bit; shift in
high-order zero bit

Shift logical right, byte or word,
memory or register number of bits
given by CL register; shift in
high-order zero bits

Shift arithmetic right, byte or
word, memory or register 1 bit;
shift in high-order bit equal to

the original high-order bit

Shift arithmetic right, byte or
word, memory or register number
of bits given by CL register;

shift in high-order bits equal to
the original high-order bit

Figure 6-6B

Bit manipulation instructions continued, shifts.

Expanding the Instruction Set 6'47

MNEMONIC SYNTAX RESULT
B ol
ROTATES

ROL mem/reg,1 Rotate byte or word, memory or
register 1 bit left

ROL mem/reg,CL Rotate byte or word, memory or
register left number of bits
given by CL register

ROR mem/reg, 1 Rotate byte or word, memory or
register 1 bit right

ROR mem/reg,CL Rotate byte or word, memory or
register right number of bits
given by CL register

RCL mem/reg,1 Rotate byte or word, memory or
register 1 bit left through
Carry flag

RCL mem/reg,CL Rotate byte or word, memory or
register left through Carry flag
number of bits given by CL
register

RCR mem/reg,1 Rotate byte or word, memory or
register 1 bit right through
Carry flag

RCR mem/reg,CL Rotate byte or word, memory or

register right through Carry flag
number of bits given by CL
register

Figure 6-6C

Bit manipulation instructions continued, rotates.

6-48 | uniT six

OR performs the logical “inclusive or” operation between the source
and destination operands, and returns the result to the destination
operand. Recall that a bit in the result is set if either or both correspond-
ing bits in the original operands are set; otherwise the bit is cleared.

XOR performs the logical “exclusive or” operation between the source
and destination operands, and returns the result to the destination
operand. Recall that a bit in the result is set if the corresponding bits
of the original operands contain opposite values (one is set, the other
is clear); otherwise, the bit is cleared.

TEST performs the logical “and” operation between the source and
destination operands, but does not return the result to the destination
operand. Neither operand is affected by the operation, only the condi-
tion code flags are affected.

Shifts

The bits in bytes and words may be shifted arithmetically or logically
up to 255 times, although a shift of more than 16 bits is of limited
value. The number of shifts is determined by a count specified in the
source operand. If the count is 1, that value can be stored as a constant
in the source operand. If the count is greater than one, the count must
be stored in the CL register and the CL register specified as the source
operand. If a count of zero is stored in the CL register, the shift operation
will be ignored. Examples of the two methods of specifying the count
are:

SHR AL,1 ;:Shift logical right one bit
SHR AL,CL ;Shift logical right "count" bits

Logical shifts can be used to isolate bits on bytes or words (record
handling is a good example). Arithmetic shifts can be used to multiply
or divide binary numbers by powers of two. Both types of shifts affect
the condition code flags in the following manner:

AF — Undefined after the operation.

PF — Reflects the number of 1-bits in the destination operand
(low-order byte in word-sized operands); set for an even
number of 1-bits, cleared for an odd number.

SF — Reflects the status of the most significant, sign, bit of
the destination operand.

Expanding the Instruction Set 6'49

ZF — Reflects the numeric value of the destination operand;
set if the operand is zero, cleared if the operand contains
a value other than zero.

CF — Always contains the value of the last bit shifted out
of the destination operand.

OF —Always undefined following a multibit shift. In a single-
bit shift, set if the value of the sign bit was changed
by the operation; cleared if the sign bit retains its origi-
nal value.

The SHL (Shift Logical Left) and SAL (Shift Arithmetic Left) instruc-
tions operate in the same manner. They shift the destination operand
bits to the left the number of times specified by the count in the source
operand. As the bits are shifted, the empty bit positions are filled with
zeros. To see how this works, suppose the DX register contained the
bit pattern OFFFFH. The following instructions:

SHL DX,1 ;Shift logical left one bit
MOV CL,0AH ;Load the shift “count" register
SHL DX, CL ;Shift logical left "count" times

would produce these results: The first instruction shifts the DX register
contents to the left one; the least significant bit is now zero.

DX = 1111 1111 1111 1110
The next instruction loads the “count” 10 into the CL register.

DX = 1111 1111 1111 1110
CL = 0000 1010

The last instruction shifts the contents of the DX register to the left
the number of bits specified in the CL register. The operation forms
a small loop where each time the DX register is shifted left one bit,
the CL register is decremented by one. When the count in the CL register
reaches zero, the shift operation ends.

DX = 1111 1000 0000 0000
CL = 0000 0000

6'50 UNIT SIX

As we said earlier, SHL and SAL perform the same shift left operation.
It is up to you which instruction mnemonic you use. That isn't the
case for the shift right operation. Here, the “logical” and “arithmetic”
operations perform different functions. The instruction SHR, (Shift Log-
ical Right), shifts the bits in the destination operand to the right the
number of bit locations specified in the “count.” The empty bit posi-
tions are filled with zeros. The SAR (Shift Arithmetic Right) instruc-
tion, on the other hand, doesn’t arbitrarily fill the empty bit positions
with zeros. Rather, it fills the empty bit positions with bits equal to
the original value of the most significant, or sign, bit. Thus, the sign
of the original operand is retained regardless of the number of bit shifts.

Now you should be able to see the purpose for the two types of shift
operations. Logical shifts are used to isolate a bit pattern. The sign
of the original value is unimportant. Arithmetic shifts, on the other
hand, need to retain the original sign of the value. Thus in an arithmetic
“right” shift, the sign is retained. In an arithmetic “left” shift, this isn’t
practical; hence the reason for the SHL and SAL instructions operating
in the same manner. There is, however, a way to preserve the sign
of a byte-sized value in a shift left operation. First, place the value
to be shifted into the AL register. Then precede the shift operation
with the CBW (Convert Byte to Word) -instruction. This will extend
the sign of the value in the AL register into the AH register. Finally,
instead of the instruction:

SAL AL,CL ;Shift arithmetic left BYTE, "“count" times
use the instruction:
SAL AX,CL ;ohift arithmetic left WORD, “count" times

As long as you don’t exceed the capacity of the AH register, less one,
the shifted value will retain its original sign.

Rotates

Rotate instructions are similar to the shift instructions, only here, the
bits aren’t lost as in a shift. Instead, the bits “circle” back into the
“other end” of the operand. Again, the number of bits moved is deter-
mined by the value in the source operand. This can be the constant
one, or some number between 1 and 255 stored in the CL register.
A count of zero will cause the rotate to be ignored.

Expanding the Instruction Set 6'51

In addition to rotating each bit out one end and into the other end
of the operand, the rotate instruction saves the value of the rotated
bit in the Carry flag. When more than one bit is rotated around the
operand, the Carry flag echoes the value of each bit as it is rotated.
The value of the last bit rotated is retained in the Carry flag. This gives
you an opportunity to isolate a particular bit in the flag and then test
the bit with a conditional jump instruction.

Figure 6-7 illustrates a simple rotate left operation. Prior to execution,
the operand contains the value 11110000B and the Carry flag is cleared.
After execution, the most significant bit in the operand has rotated
around to the least significant bit position and the Carry flag echoes
the value of the rotated bit.

E]‘J'——Iﬂllellolulol'JI'J

BEFORE EXECUTION

m‘JHlll‘lhhlo—[u{lh—l

AFTER EXECUTION

Figure 6-7

Simple rotate left operation.

In addition to the Carry flag, the rotate instruction updates the Overflow
flag. In a single-bit rotate, OF is set if the value of the sign bit was
changed by the rotate. If there was no change, OF is cleared. In a multi-
bit rotate, OF is undefined. The other flags are unaffected by a rotate
operation.

6-52 | uniT six

There are two basic rotate instructions: ROL, (Rotate Left), and ROR,
(Rotate Right). The rotate left instruction shifts the bits out of the most
significant bit (MSB) end of the operand, and immediately shifts them
back into the least significant bit (LSB) end of the operand. As an exam-
ple, suppose the BL register contains 0AFH, the CL register contains
04H, and CF and OF are cleared.

BL = 1010 1111

CL = 0000 0100
CF =0
OF = 0
After the instruction:
ROL BL,CL ;Rotate left “count" times

is executed, the BL register will contain OFAH, the CL register will
contain zero, the last rotate clears CF, and OF is undefined.

BL = 1111 1010
CL = 0000 0000
CF =0
OF = 7

The rotate right instruction operates in the same fashion, except the
bits are shifted out of the LSB and into the MSB.

A variation of the simple rotate instruction is the rotate through carry
instruction where the Carry flag is part of the operation. Here, the ro-
tated bits pass through the Carry flag before returning to the operand.
Thus, when a bit is rotated out of the operand, it is shifted into the
Carry flag; the empty bit position in the operand is filled with the
original contents of the Carry flag. An example of a rotate through carry
left operation is shown in Figure 6-8.

’—m-—nhlo[mmmk—]

BEFORE EXECUTION

L@!——-{nlaln]ﬂlToLo]ll‘J

AFTER EXECUTION

Figure 6-8
Rotate left through carry operation.

Expanding the Instruction Set 6'53

There are two rotate through carry instructions: RCL, (Rotate Through
Carry Left), and RCR, (Rotate Through Carry Right). The rotate through
carry left instruction shifts a bit out of the MSB of the operand and
into the Carry flag. At the same time, the Carry flag bit is shifted into
the empty LSB of the operand. The rotate through carry right instruction
does just the opposite. Here, the LSB is shifted out of the operand
and into the Carry flag. At the same time, the Carry flag bit is shifted
into the empty MSB of the operand. As an example, suppose the BL
register contains 01FH, and CF and OF are cleared.

BL = 0001 1111

CF =0
OF =0
After the instruction:
RCR BL,1

is executed, the BL register will contain OFH and CF is set. Since the
sign bit didn’t change, OF remains cleared.

BL = 0000 1111
CF =1
OF = 0

The rotate and rotate through carry instructions are identical except
for the way the Carry flag is handled. In the simple rotate operation,
the Carry flag echoes the value of the last bit rotated. In the rotate
through carry operation, the Carry flag stores the last bit rotated, while
the displaced flag bit is shifted into the operand.

6'54 UNIT SIX

Self-Review Questions

34.

35.

36.

37.

38.

39.

40.

41.

The TEST instruction uses an arithmetic operation to update the
condition code flags.

True/False

After a ‘“logical” operation, the Auxiliary Carry flag is

The NOT operation forms the 2’s complement of the destination
operand.

True/False

The shift operation lets you shift up to bits out
of the destination operand.

The register is used to hold the shift “count.”

The instruction preserves the original sign of the
operand during a shift operation.

All of the rotate instructions save the value of the last bit rotated
out of the operand in the Carry flag.

True/False

If the AL register contains OFH, CF is set, and OF is cleared,
then the AL register will contain after the instruc-
tion:

ROL AL,1

is executed.

Expanding the Instruction Set 6'55

EXPERIMENT

Expanding the Instruction Set

OBJECTIVES: 1. Demonstrate the transfer and transla-
tion instructions.

2. Demonstrate a few of the arithmetic in-
structions.

3. Demonstrate the bit manipulation in-
structions.

Introduction

This experiment will give you an opportunity to use an example of
each of the instructions introduced in Unit 6. These include the transfer
and translation instructions, a cross section of the arithmetic instruc-
tions, and all of the bit manipulation instructions. To add more interest
to the programs, some of them will send a message to the display.

The Zenith and IBM microcomputer systems use different methods for
accessing their display. To accommodate these differences, the pro-
grams that use the display will contain a separate display control
routine for each system. We’ll examine these different routines in the
first program in the experiment.

6-56 | unirsix

Procedure

Figures 6-9A and 6-9B contain a program that illustrates the trans-
fer and translation instructions. It also sends a decoded message
to the display. Two different interrupt service routines are used
to control the display. One is called CLEAR ZENITH, the other
is called CLEAR_IBM. Each is accessed through a CALL instruc-
tion. You will find these instructions between two rows of Xs
in Figure 6-9A. As the program is listed, the:

CALL CLEARIBM

instruction is disabled, because it is preceded by a semicolon.
Thus, the program will only work on a Zenith computer using
Z-DOS as a “system program.” To use the program on an IBM
or IBM compatible microcomputer, remove the semicolon from
in front of the instruction:

CALL CLEAR.IBM
and place a semicolon in front of the instruction:
CALL CLEAR_ZENITH

Call up the editor and enter the correct program for your system.
Then assemble, link, and convert your program into a COM file.
(Be sure to load the complete program, not just the code and
data for your system. Later, you will be asked to examine specific
memory locations. If you leave out part of the program, those
memory locations will be incorrect.)

The program is essentially divided into three sections. The first
illustrates the four transfer instructions. The second uses the
translation instruction to decode a message. The last is a simple
routine to display the decoded message. It really is simple; it
just appears complex because we have to accommodate two dif-
ferent display systems.

Call up the debugger and load your program COM file. In the
following steps you will single-step through the first two sections
of the program. Then you will let the debugger run the last section
of the program.

First, type “R” and RETURN to display the registers and the first
instruction in the program. Single-step through the instruction.
The AL register bits are loaded with ones.

Expanding the Instruction Set 6'57

TITLE EXPERIMENT & -— PROGRAM 1 — DATA TRANSFER AND TRANSLATION
COM_PROG SEGMENT

ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG
H

ORG 1084
START: MOV AL, OFFH jFill register with ones
LAHF ;Get low byte of flag register
XCHG AL,AH jSwap data between registers
SAHF ;Store ones to low byte flag reg.
LEA BY, TABLE ;Get address of data table
LEA BP,CODE ;Get address of data code
LEA D1, DECODE ;Get address of decoded code storage
REPEAT: MOV AL, [BP] ;Get byte of code
INC BP ;Point to next code byte
XLAT ;Decode the code
MoV (DIl AL jStore decoded code
INC DI ;Point to next storage area
cwe AL,’$’ jHas last decoded byte a ’$’?
JNE REPEAT ;No, decode next code byte

3 XX0OOO0O0ONON0OEEEENNOEENNOEKNNNENNNONCENEEOENENNNENNENNOEKEXXXX
CALL CLEAR_ZENITH jZenith clear screen routine

H CALL CLEAR_IBM ;IBM clear screen routine
3 XXOOOEOOOOCEXXXX00OO0ENNNNOON0NNNONNNNNEXXX XXX XX XXXXXXXXXX
MOV AH,2 jLoad interrupt “display
jcharacter” command
LEA DI, DECODE ;Get address of decoded code
QUTPUT: MOV DL, [DI] jLoad first byte to be "displayed”
(0, DL,’¢’ jLast byte of decoded code?
JE STOP ;Yes, go to end of program
INC DI tNo, point to next decoded byte
INT 21H 3Call the interrupt routine
JP OUTPUT jDisplay next character
i)
CLEAR_ZENITH: ;Subroutine to clear the screen and

thome the cursor on & Zenith system

LEA DX,CLEAR_SCREEN ;Get the address of the code to
sclear screen and home cursor

MOV AH,9 sLoad interrupt “send character
jstring" command

INT 21H jCall the interrupt routine

RET sReturn from subroutine call

]
CLEAR_IBM: 3Subroutine to clear the screen and

jhome the cursor on an IBM PC

MOV AH, b jLoad interrupt VIDED_ID “scroll
jactive page up" command

MOV A0 jNumber of lines blanked at bottom
sof display window

MoV Ccx,e ;Address of first display byte

MoV DX, 19504 jAddress of last display byte

MOV BH,7 sNormal display attributes

INT 18H ;Call video interrupt routine

MOV AH,2 sLoad interrupt VIEDO_IO "cursor
sposition" command

MOV DX,@ sCursor address location, make zero
jto home the cursor

MOV BH, 9 sMake displag page number zero

INT 16H ;Call video interrupt routine

RET jReturn from subroutine call

Figure 6-9A
Program to illustrate data
transfer and translation.

6'58 UNIT SIX

STOP: MOV AH, @ ;Load interrupt “"program terminate,
jreturn to monitor™ command
INT 21H ;Call the interrupt routine
L]
CLEAR_SCREEN DB 1BH,’E’ ,1BH,'H’ ,’$’ ;Code to clear screen
sand home cursor on Zenith system
TABLE DB ’ADEFHILNORST $’;Code translation table

CODE DB OBH, 4,5, 0AH, CH, 5, 0AH, 6CH, 9, 0CH, OBH, 2, 0AH, OBH, OCH
DB ©BH,9,0,7,0/H,4,0,0BH,5,8,7,00H ;Coded message

DECODE DB S DU (”) ;Storage for the decoded message
i
COM_PROG ENDS
END START
Figure 6-9B
Continuation of the program to illustrate
data transfer and translation.

Single-step through the LAHF instruction. The AH register is
loaded with the contents of the low-order byte of the Flag register.
Your register contains the value _ _ H. In binary, this is _ _
______ B. Since the debugger starts a program with the
Flag register bits cleared to zero, your AH register should contain
binary the value:

00X0X0X0

where the Xs represent undefined bits. Thus, your register can
contain any value from 0 to 2AH, depending on the state of those
undefined bits.

The AX register contains the value _ __ _ _ H. Single-step through
the next instruction. The AX register now contains the value
— __ _H. The AH and AL register contents have been exchanged.

The Flag register bit values are _ _ _ _ _ _ _ _. Single-step
through the next instruction. The Flag register bit values are now
_______ —. The SAHF instruction stored the contents of
the AH registe: {0FFH) into the low-order byte of the Flag register.
This set the Sign, Zero, Auxiliary Carry, Parity, and Carry flags
to one. The other three flags in the high-order byte remain clear.

Single-step through the next three instructions. They load the
two base registers and an index register in preparation for the
code translation loop.

The loop begins by loading the first byte in the array CODE into
the AL register. Single-step through the instruction. The AL regis-
ter contains the value _ _ H.

Expanding the Instruction Set 6'59

10.

11.

12.

13.

14.

Single-step through the next instruction. The BP register is incre-
mented to point to the next byte in the array CODE.

Single-step through the next instruction. The AL register contains
the value _ _ H. The XLAT instruction has used the EA formed
by the contents of the BX and AL registers to retrieve a byte of
data in memory. Recall that BX contains the base address of the
array TABLE. The AL register contents (0BH) serve as an index
into the array. Thus, the twelfth byte (the first byte is zero, and
OBH equals decimal 11) is moved into the AL register. That byte
is the ASCII code (54H) for the letter “T".

Examine offset address 0186H, type “D180” and RETURN. It is
the first byte in the array DECODE, and it contains the value
— — H. Single-step through the next instruction. Again examine
offset address 0186H. The memory location contains the value
— — H. This should match the value that was stored in the AL
register.

The program has just stored the first character that will be dis-
played. Notice that the character was stored in the form of ASCII
code. This type of coding is required by the display routine in
this program.

Single-step through the next instruction. The DI register is incre-
mented to point to the next storage location.

The status of the Zero flag is Single-step through
the next instruction. It compared the contents of the AL register
with the ASCII code for the character “$”. The status of the Zero
flag is The two ASCII codes do not match, so
the flag is clear (NZ). The character “$” is used to indicate the
end of the message to be displayed.

Single-step through the next instruction. The IP register contains
the value — _ _ _ H. This is the address of the first instruction
in the REPEAT loop. Had the previous compare instruction set
the Zero flag, this conditional jump instruction would have been
ignored. Since the flag was clear, the jump was taken, causing
the loop to repeat. If you wish to observe the operation of the
loop a few more times, continue single-stepping. When you've
had enough, proceed to Step 15.

6-60 | unrrsix

15.

16.

17.

The rest of the program clears the display, “homes” the cursor
to the top left-hand corner of the display, and prints the decoded
message on the display. Run the remainder of the program by
typing “G” and RETURN. The display will clear and the message
“THIS IS A TEST TRANSLATION” will appear at the top of the
display. The next line in the display contains the debugger mes-
sage “Program terminated normally” to tell you the program ran
okay, and that you are back under the control of the debugger.
The third line in the display contains the debugger “prompt”
and cursor.

While you are still in the debugger, examine the array DECODE
one more time. Type “D180” and RETURN. The array begins at
offset address 0186H. The ASCII characters in the message are
shown on right side of the display. As you can see, the message
uses the first 27 locations in the array, leaving 23 locations empty.
Thus, if you wish, you can rewrite your program to print a 50-
character message. Just make sure the end of the message is iden-
tified with the “$” character.

Exit the debugger. Run your program again; type the file name
without the extension “.COM” and RETURN. The display will
clear and the message “THIS IS A TEST TRANSLATION” will
appear on the first line. The next line contains the system monitor
prompt and cursor.

Discussion

After the program finished the REPEAT loop, the next instruction called
either the CLEAR ZENITH subroutine or the CLEARIBM subroutine.
We'll describe the CLEAR ZENITH subroutine first. Then we’ll describe
the remainder of the program. Finally, we'll describe the CLEAR IBM
subroutine. Whether you have an IBM or a Zenith system, read the
whole “Discussion.” The material presented is important for your com-
plete understanding of assembly language.

Expanding the Instruction Set 6'61

CLEAR_ZENITH sends two “escape” codes to the system to clear the
display and send the cursor to its “home” location. These escape codes
are part of a series of codes that can be used to control many functions
of the system, including the cursor characteristics, the video display,
the programmable function keys, and the characteristics of the dis-
played characters. All of the escape codes are listed in the Appendix
of the manual that came with your Z-DOS system software.

The escape code for “clear display” is ESC E, while the code for “home
cursor” is ESC H. Before these escape codes can be transmitted to the
system, they must be converted to their ASCII code values. Normally,
you enclose the character, or characters, to be converted within single
or double quotation marks and let the assembler do the conversion.
However, that won’t work with ESC. The assembler will think it’s con-
verting three individual characters. For that reason, you must determine
the correct ASCII code and load it into the program as a constant. Figure
6-5A, on Page 6-22, is a listing of the ASCII codes. Notice that columns
1 and 2 of the figure contain special control function codes. (These
are explained in Figure 6-5B.) Escape (ESC) is listed in column 2. The
ASCII code for ESC is 1BH. (As before, you can assume that the eighth
bit in an ASCII code byte is zero.) Thus, the assembler directive state-
ment to clear the display and home the cursor can be written:

DB 1BH, 'E',1BH, 'H'

While you must “tell” the assembler the ASCII code for special control
functions, like escape, it's always a good idea to let the assembler per-
form the conversion for normal alphanumeric characters and symbols.
That cuts down the chances for error in your program.

The escape codes are sent to the system using another variation of
the interrupt 21H command. Recall that interrupt 21H, function 0 re-
turns the microprocessor to the system program. Subroutine
CLEAR_ZENITH uses interrupt 21H, function 9 to send a “character
string” containing the escape codes to the display. A character string
transmitted by function 9 can contain printable or nonprintable ASCII
characters. Your decoded message contained printable characters. Spe-
cial control functions and their supporting character codes are non-
printable characters. Thus, when the “clear display” and “home cursor”
commands are transmitted, they will not be displayed.

6-62 | uniTsix

To execute the interrupt 21H, function 9 command, the subroutine
CLEAR ZENITH first loads the effective address of the escape codes
stored in memory into the DX register. (You must load the address
of the character string into the DX register for the interrupt to function
properly.) The address is identified by the name CLEAR_SCREEN.
Notice that, along with the escape codes, the CLEAR_SCREEN define
byte statement also contains the character “$”. This is used by the inter-
rupt routine to identify the end of the character string. The next instruc-
tion loads the AH register with the function number for the “send char-
acter string” interrupt. The third instruction executes the interrupt,
sending the escape codes to the display. The system interprets the es-
cape codes, clears the display, and homes the cursor. Finally, the return
from interrupt instruction loads the Instruction Pointer register with
the offset address of the instruction following the subroutine call.

With the screen cleared, the program is ready to send the decoded
message. We could have used the “send character string” interrupt a
second time, but we wanted you to see how the “display character”
interrupt is used. Interrupt 21H, function 2, sends a single ASCII charac-
ter to the display each time the interrupt is executed. The character
must be in the DL register.

The two instructions immediately after the subroutine call prepare the
MPU for the character OUTPUT loop. The first instruction loads the
interrupt function number (2) into the AH register. Then the starting
address of the decoded message is loaded into the DI register.

Now the loop begins. The first instruction loads the first byte of the
message into the DL register. The byte is then tested to see if it is
the “$” character. Since it isn’t, the conditional jump is ignored, and
the DI register is incremented to point to the next message byte. The
next instruction sends the character in the DL register to the display.
Finally, the unconditional jump forces the loop to repeat. When the
last character in the message, the “$” character, is loaded into the DL
register, the conditional jump if equal instruction sends the MPU to
the end of the program. This location is identified by the label STOP.
Interrupt function zero is loaded into the AH register, and the interrupt
21H command is executed. This sends the MPU back to the system
monitor. The three interrupt 21H commands used in this program, plus
all of the other interrupt 21H commands, are described in the Appendix
of both the IBM and Zenith system DOS manuals.

Expanding the Instruction Set 6’63

Now that you are familiar with the program, let’s look at the subroutine
for IBM and IBM compatible systems. First, we didn’t use a different
subroutine because IBM doesn’t support interrupt 21H, function 9 —
it does. What IBM doesn’t support are the Zenith escape codes. This
is virtually true on all microcomputer systems. Everybody has their
own way of doing things.

IBM controls its system characteristics through a number of BIOS
routines in its Read Only Memory (ROM) monitor. A listing of the
BIOS ROM code is provided in the appendix of the IBM Technical
Reference manual. The procedure used to clear the screen and home
the cursor is listed under the category INTerrupt 10 VIDEO_IO.

IBM clears its display by scrolling blank lines onto the screen using
an interrupt 10, function 6 command. Therefore, the first instruction
in the subroutine CLEAR IBM loads the AH register with the function
number 6. The next code loaded into the AL register identifies the
number of blank lines at the bottom of the “display window.” Since
the whole display will be blank, this value can be zero. Next, the CX
register is loaded with the row (CH) and column (CL) address of the
first byte of the display area being scrolled. Since that is the first byte
in the display, the CX register is loaded with zero. Then the DX register
is loaded with the row (DH) and column (DL) of the last byte in display
being scrolled. Assuming a 25-row by 80-column display, the value
1950H is loaded into the DX register. Finally, the BH register is loaded
with the display attributes. These determine the foreground and back-
ground color in the display and whether the cursor is blinking or non-
blinking. The value 7 produces a normal display. Again, the Technical
Reference manual describes all of the attribute variations for an IBM
color or monochrome display. After all of the control codes have been
loaded into the appropriate registers, the interrupt 10 command is exe-
cuted and the display is blanked.

6'64 UNIT SIX

After the display is blanked, the subroutine moves the cursor to the
top left-hand corner of the display. First, the DX register is loaded with
the desired cursor location. “Home” is at row (DH) zero and column
(DL) zero. The next instruction identifies the display “page” number.
Depending on the display resolution, video memory can store up to
eight displays worth (pages) of data. Identifying the page number tells
the system what byte the cursor is pointing to in video memory. For
this program, we are pointing at the first byte in the first page of video
memory; hence the value zero loaded into the BH register. Executing
the interrupt 10 instruction moves the cursor to its “home” location.
The last instruction in the subroutine returns the MPU to the main
program.

Now that you've had a chance to exercise the transfer and translation
instructions, let’s review the bit manipulation instructions. As you dis-
covered earlier, many of the conditional instructions rely on various
logical operations to determine the outcome of the response. Since logi-
cal operations are an integral part of programming, all of the basic types
are included in the 8088/8086 MPU instruction set. The next program
will show you how all of the logical instructions operate. In addition,
the program will present a cross section of the shift and rotate instruc-
tions.

Procedure Continued

18. Call up the editor and enter the program listed in Figure 6-10.
Assemble, link, and convert the program into a COM file.

19. Call up the debugger and load your program COM file. Single-step
through the program and answer the following questions. Use
the Instruction Pointer register value as a guide to the questions.
Note that some of the program instructions simply prepare the
MPU for a particular operation. These have been ignored in the

questions.
IP = 010AH AX=____H.
BX=____H.
Flags = __ ___ __.
ODISZAPC
Address 0141H = _ _H, low byte of AX.

Address 0142H = _ _ H, high byte of AX.

Expanding the Instruction Set 6'65

TITLE EXPERIMENT & -- PROGRAM 2 ~— LOGICALS, SHIFTS, AND ROTATES
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, $5:COM_PROG

ORG

]

START: MOV
LEA
nov
AND
OR
XOR
NOT
MOV
PUSH
POPF
TEST

ioeH

sLOGICAL INSTRUCTIONS

AX,, OFF 00H
BX, SAVE
SAVE, AX
AX, OFFOH

3Fill register half ones, half zeros
;Get the effective address

;Store the register for later use
;Mask the first and last four bits

WORD PTR [BX1,0FF@H ;Add @FOH to low byte at SAVE

AX, OFFOH

WORD PTR [BX]
CX, OFFFFH

cX

[BX3,AX

SSHIFT INSTRUCTIONS

5
$ROTATE INSTRUCTIONS

SuB
PUSH
POPF
MOV
MoV
ROL
ROR
RCR
RCL
RCR
cLc
RCL

y

SAVE W

4

COM_PROG ENDS
END

START

jZero high byte, add @F@H to low byte
sInvert the bits at SAVE

jFill register with ones

;Save register in stack

jLoad ones in Flag register bits
jUpdate the flags

jLoad a shift count

3Shift logic left one bit

3Shift arithmetic left count bits
;Shift logic right count

;Shift arithmetic right one bit
3Set high bit of high and low bytes
;Shift arithmetic right count bits

jZero the register

;Save register in stack

;Load zeros in Flag register bits
jLoad rotate count

;0et the value at SAVE

jRotate left count

jRotate right count

tRotate through carry right count
jRotate through carry left one bit
jRotate through carry right one bit
;Clear Carry flag

jRotate through carry left one bit

sInitialize one word to zero

Figure 6-10
Program to illustrate the operation
of the bit manipulation instructions.

6"66 UNIT SIX

IP = 010DH
IP = 0111H
IP = 0114H
IP = 0116H
IP = 011BH
IP = 011DH
IP = 0121H
IP = 0123H
IP = 0125H
IP = 0127H

AX=___ _H.
Flags = — — — — — .
ODISZAPC
Address 0141H = _ _H.
Address 0142H = _ _H.
0 R S
ODISZAPC
AX =___ _H.
Flags=
ODISZAPC
Address 0141H = _ _H.
Address 0142H = __H.
Flags = i
ODISZAPC
CX=____H.
Flags = — _ _ __ _
ODISZAPC
AX=____H.
Flags = — .
ODISZAPC
AX=____H.
Flags = _ o e
ODISZAPC
CL=..-H
AX=___ _H.
Flags = _ __ _____.
ODISZAPC
AX=____H.
Flags = _ _ ___ _ _ _ H
ODISZAPC
AX=____H.
Flagg =__ ______ _.

ODISZAPC

Expanding the Instruction Set 6‘67

IP = 012AH

IP = 012CH

IP = 0130H

IP = 0134H

IP = 0136H

IP = 0138H

IP = 013AH

IP = 013CH

IP = 013EH

IP = 013FH

IP = 0141H

AX=____H.

AX=____H,

ODISZAPC

CX=____H.

Flagg=__ _ ____ _.
ODISZAPC

CL=__H.
DX=____H.

6"68 _ UNIT SIX

Discussion

With a few exceptions, all of the steps in the program are self-explanato-
ry. To get a good cross-section of instruction types, the program manip-
ulates data in both the MPU registers and in memory. If you have any
problems understanding a particular bit pattern after an operation, try
converting the hex value to binary.

The OR and NOT instructions required the assembler operator WORD
PTR to help the assembler determine the data size.

To illustrate a point, we had to set all of the Flag register bits, and
later clear all of the Flag register bits. To do this, we stored the necessary
data in the CX register, pushed the register contents into the stack,
and immediately popped the data into the Flag register. You saw the
first occurrence when the IP was at 011BH.

Did you remember that, when you execute a logic or shift instruction,
some of the Flag bits will either be set, cleared, or undefined? Also,
the only flags affected by a rotate instruction are CF and OF; the other
flags are undefined. In addition, OF is undefined after a multiple bit
rotate.

The remaining programs in this experiment will show how the various
arithmetic instructions can be used.

Procedure Continued

20. Call up the editor and enter the program in Figure 6-11. Assemble,
link, and convert the program to a COM file.

Expanding the Instruction Set 6'69

TITLE EXPERIMENT 4 —- PROGRAM 3 — ADDING WITH CARRY, BCD MUMBERS
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS; COM_PROG, SS: COM_PROG

ORG 100H
START: MOV cX,é ;Set the loop count
cc ;Clear flag for first add with carry
LEA BX,NUMBER1 ;Get address of first BCD number
LEA BP,NUMBER2 ;Get address of second BCD number
LEA s1,5uM ;Get address of storage for BCD sum
COUNT: MOV AH, @ ;Prepare register to hold overflow
MOV AL, [BX1 ;Get one byte of first number
ADC AL, [BP] jAdd one byte of second number
jto first number with carry
AdH tAdjust BCD sum in AL register
MOV [SI1,AL ;Save the adjusted BCD
INC BX jPoint to next first BCD number
INC BP sPoint to next second BCD number
INC sI sPoint to next storage for BCD sum
LOOP COUNT 3Any more BCD numbers?
ADD (SI1,AH ;Save overflow as most sig. BCD number
INT 3 jReturn to debugger
1
NUMBER! DB 6,8,6,6,6,6 jLeast significant number first
NUMBER2 DB 8,8,8,8,8,8 sLeast significant number first
SUM DB 7 DUP (@) jReserve seven locations for sum,
jstore least significant number first
3
COM_PROG ENDS
END START

Figure 6-11
Adding two multibyte BCD numbers together.

21. Load your debugger and program COM file. Single-step through
the program until the program loops back to COUNT (offset ad-
dress 0110H). Answer the following questions.

IP = 0114H AL = __H.
IP = 0117H AL=__H
CF=_
IP = 0118H AL =__H.
AH=__H
CF =_,
Address 012EH = _ _H.
IP = 011AH Address 012EH = _ _H.
IP = 0110H AL=__H
AH = _ _

6‘70 UNIT SIX

22. Let the debugger run the remainder of the program — type “G”
and RETURN. Answer the following questions.

Address 012EH = _ __H, the least significant BCD of the
sum.

Address 012FH = _ _H.

Address 0130H = _ _H.

Address 0131H = _ _H.

Address 0132H = _ _H.

Address 0133H = _ _H.

Address 0134H = _ _H, the most significant BCD of the
sum.

Discussion

Your program operates in a fashion similar to a six-digit calculator.
Memory arrays NUMBER1 and NUMBER2 are the six-digit “input regis-
ters.” To keep the program simple, we had you load them with BCD
values prior to running the program. The program then adds the two
six-digit numbers together, one byte at a time, and stores the result
in a third memory array called SUM. An additional byte was reserved
in SUM to store any overflow from the add-with-carry operation.

To accomplish its task, the program uses the loop instruction to add
the six BCD together. Had there been less than six digits, the remaining
memory locations would have been loaded with zeros. Once the loop
count was set, the Carry flag was cleared to make sure a carry isn’t
added to the first number pair. Then the offset address to each of the
memory arrays was loaded into the MPU. Finally, the loop was exe-
cuted.

Procedure Continued

23. Exit the debugger and call up the editor. Change the value in
NUMBER1 to the number string ‘666666’ and the value in
NUMBER2 to the number string ‘888888°. This will cause the
ASCII code for each number to be loaded into the memory arrays,
instead of the BCD value stored earlier.

Expanding the Instruction Set 6'71

24,

25,

Assemble, link, and convert the program to a COM file. Load
the debugger and your COM file, and execute the program by
typing “G” and RETURN. Record the values found at the follow-
ing addresses.

Address 012EH = _ _H.
Address 012FH = _ _H.
Address 0130H = __H.
Address 0131H = _ _H.
Address 0132H = _ _H.
Address 0133H = _ _H.
Address 0134H = _ _H.

Compare these values to the values recorded in Step 22. Do they
match? Unless you used the wrong values in your program, they
should match. This verifies that the ASCII adjust for add can
accommodate both BCD and ASCII coded number values.

Now that you have an idea of how to add multibyte numbers,
write a program similar to the “addition” program that will sub-
tract one multibyte ASCII number from another. Assume that
NUMBER1 will always be greater than NUMBER2. Use the value
‘666888’ for NUMBER1 and the value ‘888666’ for NUMBER2
(remember, the least significant byte is the first byte in each of
these values). Try not to look at Figure 6-12 until you have your
program working.

6'72 UNIT SIX

Discussion

Figure 6-12 shows one way you could have written your subtraction
program. Notice that it is quite similar to the preceding addition pro-
gram. In fact, in addition to the data, only three instructions were
changed. Add with carry is now subtract with borrow; ASCII adjust
for add is now ASCII adjust for subtract; and finally, the instruction
that added the carry in the AH register is now a simple move operation.
The last change insures that, if by mistake a larger number is subtracted
from a smaller number, an indication of a “borrow” is saved as the
most significant byte of the difference.

Recall that when AL contains a value greater than 9, or the Auxiliary
Carry flag is set, a “borrow” has occurred. This causes the ASCII adjust
for subtraction instruction to, among other things, subtract 1 from the
AH register. Since the AH register is zero prior to executing AAS in
this program, subtracting 1 leaves the difference OFFH. Thus, OFFH
is stored as the most significant byte of the difference to indicate a
subtraction error. Naturally, if no borrow occurred, the AH register re-
mains zero and zero is stored to indicate no subtraction error.

The next program you will examine multiplies one multibyte number
by another. Because of the complexity of the operation, it will provide
good examples of both the multiply and divide instructions. To keep
the program relatively simple, we limited the size of the numbers that
can be multiplied to three digits, and the product to six. The first half
of the program converts and adds the ASCII number sets to produce
two 16-bit numbers that can be easily multiplied. After the numbers
are multiplied, the last half of the program translates the 32-bit product

into BCD digits that represent the value of the product. '

Expanding the Instruction Set 6'73

TITLE EXPERIMENT 6 -- PROGRAM 4 — SUBTRACTING ASCIT NUMBERS
COM_PROG SEGMENT

ASSUME CS1COM_PROG, DS: COM_PROG, 55: COM_PROG

ORG 100H
START: MOV cX,é ;Set the loop count
CLC jClear Carry (borrow) flag for
;first subtract with borrow
LEA BX, NUNBER1 ;6et address of first (larger) number
LEA BP, NUMBER2 ;Get address of second (smaller) number
LEA SI,DIFFERENCE ;Get address of difference storage
COUNT: MOV AH,0 jPrepare register to hold borrow
MoV AL, [BX] ;Get one byte of first number
SBB AL, [BP] jSubtract one byte of second number
;then subtract one if CF set
AAS jAdjust difference in AL register
MOV [S11,AL jSave the adjusted byte
INC BX jPoint to next first number byte
INC BP $Point to next second number byte
INC SI ;Point to next storage for difference
LOOP COUNT sAny more bytes?
MoV [SI],AH ;Flag any extra borrow in the most
jsignificant byte of the difference
INT 3 jReturn to debugger
"
NUMBER! DB ! 666888’ jLeast significant byte first
NUMBER2 DB ' 888LLL’ jLeast significant byte first
DIFFERENCE DB 7 DUP (0) jReserve six locations for difference
jstore least significant byte first
jreserve most significant byte
jfor extra borrow indicator
4
COM_PROG ENDS
END START
Figure 6-12

Program to subtract one multibyte
ASCII number from another.

6'74 UNIT SIX

Procedure Continued

26,

27.

28.

29,

30.

Call up the editor and enter the program in Figure 6-13. Assemble,
link, and convert the program to a COM file.

Load the debugger and your program COM file. Single-step
through the program to address 0121H. As you execute each in-
struction, observe the results in AX, BX, CX, BP, and DI registers.
The AX register contains the value . _ _ __ H, while the SIregister
contains the value __ __H.

Now let the debugger run the second conversion loop. Type
“G11E” and RETURN. The AX register contains the value . _
— —H, while the SI register contains the value _ . _ _H.

The AX register doesn’t appear to have changed, but that’s only
because both NUMBER1 and NUMBER?2 are identical. The SI reg-
ister contains the value that was left in the AX register after the
first conversion loop.

Single-step to address 0134H. The DX register contains the value
— — — — H, while the AX register contains the value _ _ _ _
H. These are the high and low words of the doubleword product.

That completes the multiplication portion of the program. The
rest of the program converts the doubleword product to BCD.
Run the program to completion — type “G” and RETURN. Record
the contents of the following addresses.

0161H = _ _H, least significant byte of six-digit product.
0162H = __H.
0163H = __H.
0164H = __H.
0165H = _ _H.

0166H = _ __H, most significant byte of six-digit product.

Expanding the Instruction Set 6'75

TITLE EXPERIMENT & -- PROGRAM S5 -- MULTIBYTE MULTIPLICATION
CON_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, 551 COM_PROG

L)
ORG
START: SUB
MOV
MOV
LEA
SUB
CONVERT: MOV

ADD
DEC

SECOND:

ZoAFnIEEEEIIRES

=]
sy
<

DECODE:

sBEp3goLygIzazesge

z

MMBER! DB
NUMBER? DB
PRODUCT DB

COM_PROG ENDS

100H
BH, BH

D1, 10

CX,3

BP, NUMBER142
AX, AX

BL, [BP]

BL, OFH

AL, BL

cX

START

;Clear register for later compare
jLoad conversion constant

1Set conversion count

;6et address of most significant byte
;Get ready for conversion

;Get byte

sTranslate ASCII to BCD

jAdd BCD to accumulator

;Count down

“;Done, start next conversion

sAdjust BCD value, multiply AX times DI
jPoint to next byte

1Do it again

;1s second conversion done?

jYes, go multiply numbers

;Store first conversion number

;Get ready for next conversion

iSet flag for second conversion

;Set count for conversion

;Get address of most significant byte
1Start second conversion

sMultiply AX and SI registers together
;Get address for storage of product
jSet number partition constant
sPartition double-word value

;Set correction constant

;Save high word for later

sGet low word for conversion

jZero high word for double-word divide
sMake BCD conversion

3Store BCD product

;Point to next storage location

;Get high word saved earlier

;Save low word for later

;Get high word for translation

sZero high word for double-word divide
sTranslate high word

;Get remainder

;Get low word and set aside

;Save what’s left of high word

sShift remainder value

jRestore low word validity

;Conversion to BCD done?

;Yes, return to debugger

sLeast significant byte first
sLeast significant byte first
;Set aside & bytes for the product
jLeast significant byte first

Figure 6-13

Program to multiply one multibyte

number by another.

6-76 | uniTsix

Discussion

The first pass through the conversion routine takes the ASCII values
stored at NUMBER1 and compresses them into a 16-bit value. The pro-
cess involves converting the ASCII values to BCD, and then shifting
and adding the digits. Since we are shifting decimal numbers, the shift
instruction won’t work. Therefore, we first take the most significant
digit and multiply it by ten. Then we add the next digit to the product.
Again we multiply that value by ten. Finally, we add the last digit
to the product. Had there been more digits, we would simply continue
the process of shifting and multiplying. The result of the operation
converts the first digit, 9, to 900; the second digit, 9, to 90; and the
last digit, 9, remains 9. The total, 999, is in the AX register at the
end of the process. Naturally, the value you recorded was 03E7H, the
hexadecimal equivalent of decimal 999.

When you ran the program to address 011EH, the first product was
stored in the SI register, and the second number, NUMBER2, was con-
verted and stored in the AX register. As you single-stepped to address
0134H, the two numbers were multiplied together and the product was
stored in the DX (high word) and AX (low word) registers, 000FH and
3A71H respectively. A word multiply will always produce a double-
word result, even if you multiply one times one. By the same token,
a byte multiply produces a word result, with register AH the high byte
and register AL the low byte.

The last half of the program converted the doubleword product to BCD
digits. Unfortunately, we couldn’t simply reverse the process we used
earlier to compact the digits. Recall that when you divide a 32-bit
number by a 16-bit number, the quotient is stored in the AX register
and the remainder is stored in the DX register. If the quotient is larger
than 16 bits, the MPU generates a type 0 interrupt. Therefore, we
couldn’t divide the product, generated earlier, by ten and store the
remainder as a BCD digit. The quotient is too large. Instead, we must
first reduce the product to a size that, when divided by ten, will produce
a 16-bit or smaller value. Figure 6-14 shows how this operation is per-
formed. To make this process easier to follow, we’ll use the product
calculated by the program.

Expanding the Instruction Set 6‘77

998 « QUOTIENT
1000)998001 HIGH VALUE

8000
9800
9000
8001
8000
1 « REMAINDER
LOW VALUE
HIGH VALUE LOW VALUE
99 « QUOTIENT 0 « QUOTIENT
10)998 10)001
S0 0
98 "1 « REMAINDER
80 LEAST
8 «— REMAINDER SIGNIFICANT
BYTE
8 « HIGH REMAINDER
x 100
800
+ 0 « LOW QUOTIENT
800 «— NEW LOW QUOTIENT
9 « QUOTIENT 80 « QUOTIENT
10]99 10J800
90 800
9 « REMAINDER "0 « REMAINDER
NEXT
SIGNIFICANT
BYTE
9 « HIGH REMAINDER
x 100
900

+ 80 « LOW QUOTIENT
980 «— NEW LOW QUOTIENT

10J9 10980

Figure 6-14
Determining the BCD digits
for a large number.

6'78 UNIT SiIX

First, the product is divided by 1000. The quotient from that division
is considered the “high value,” while the remainder is considered the
“low value.” Now, to determine the first, or least significant byte, the
low value is divided by 10 and the remainder saved as the first BCD.
Next, we divide the high value by 10. The remainder is 8. However,
it has a true value of 800 because of the earlier splitting of the original
value. Thus, we add 800 to the low quotient, 0, to produce a new
low quotient.

Now we repeat the process. Dividing 800 by 10 gives a remainder of
0, the next significant byte stored, and a quotient of 80. Likewise, divid-
ing 99 by 10 gives a remainder of 9 with a quotient of 9. Since the
remainder 9 again has a true value of 900, 900 is added to the low
quotient of 80 to produce the new low quotient 980. The process con-
tinues until both the high value and low value are reduced to zero.
All of the remainders that were stored from the low value division
operation represent the decimal value of the original product.

That is how the program converts the product to BCD form. Because
the AX and DX registers must be used for each division operation,
the stack is used a number of times to save the various high and low
value quotients. After the initial dividing of the product, the BX register
holds the constant 100 that is used to convert the high value remainder
to its true value. The DI register holds the constant 10 that is used
to generate the high and low values remainders. Note that the least
significant byte of the product is stored at address 0161H, and the high
byte is stored at address 0166H.

This completes the Experiment for Unit 6. Proceed to the Unit 6 Exami-
nation.

Expanding the Instruction Set 6"79

UNIT 6 EXAMINATION

Which of the following instructions is used to move the contents
of the AX register to the BX register, and at the same time move
the contents of the BX register to the AX register?

A. MOV.

B. XCHG.

C. SAHF.

D. XLAT
Which of the following instructions is used to load flags into
the AH register?

A. PUSHF.

B. POPF.

C. SAHF.

D. LAHF.

The DAA instruction is used to:

A. Packunpacked decimal numbers.

B. Prepare the AX register for a packed decimal add.

C. Compress the contents of the AX register into the AL
register.

D. Adjust the result of a packed decimal add.

Which of the following instructions lets you subtract only the
contents of the AL register from the contents of the BL register?

A. AAS.
B. SUB.
C. SBB.
D. DAS.

Th

S instruction is used to:

Pack unpacked decimal numbers.
Compress the contents of the AX register into the AL
register.

e DA
A. Adjust the result of a packed decimal subtraction.
c
D. Prepare the AX register for a packed decimal subtraction.

6'80 UNIT SIX

6. Which of the following instructions automatically extends the
sign of the result into the high-order register if the result only
occupies the low-order register?

A. MUL.
B. IMUL.
C. CBWwW.
D. AAM.
7. Which of the following instructions is used for an integer divide
instruction?

A. CBW.
B. DIV.

C. IDILV.

D. AAD.

8. All of the following flags are updated by a logical operation, ex-

cept:

OCO®wx

OF.
CF.
SF.
AF.

9. The “exclusive OR” operation returns a one to the destination
operand bit if:

A.

B.

C.
D.

Either or both corresponding bits of the original operands
are set.

The corresponding bits of the original operands contain
opposite values.

The corresponding bits of the original operands are set.
The corresponding bits of the original operands are iden-
tical.

10. Which of the following instructions perform the same operation
as the instruction SHL?

DOwp

SHR.
SAR.
SAL.

- SBB.

Expanding the Instruction Set 6‘81

11.

12.

13.

Which of the following flags is undefined after a single-bit shift

operation?
A. AF.
B. PF.
C. CF.
D. OF.

In a rotate operation, the CL register can be used to hold the
count. What is the maximum count value that can be specified?

A. 256.
B. +127.
C. 255.
D. -—128.

In a single-bit rotate, which instruction stores the value of CF
in the least significant bit of the destination operand?

A. ROR.
B. ROL.
C. RCR
D. RCL.

6'82 UNIT SIX

10.

11.

12.

13.

EXAMINATION ANSWERS

B — The XCHG instruction is used to swap the contents of two
registers.

D — The instruction LAHF is used to load the lower eight bits
of the Flag register into the AH register.

D — The DAA instruction is used to adjust the result of a packed
decimal add.

B — The instruction SUB lets you subtract the contents of the
AL register from the contents of the BL register.

A — The DAS instruction is used to adjust the result of a packed
decimal subtraction.

B — The IMUL instruction automatically extends the sign of the
result into the high-order register if the result only occupies
the low- order register.

C — The instruction IDIV is used for an integer divide operation.

D — All of the following flags are updated by a logical operation
except AF.

B — The “exclusive OR” operation returns a one to the destina-
tion operand if the corresponding bits of the original
operands contain opposite values.

C — The SAL instruction performs the same operation as the SHL
instruction.

A — AF is undefined after a single-bit shift operation. OF is only
undefined after a multibit shift operation.

C — The maximum count that can be stored in the CL register
is 255.

D — In a single-bit rotate, the instruction RCL will store the value
of CF in the least significant bit of the destination operand.

Expanding the Instruction Set 6‘83

SELF-REVIEW ANSWERS

False. The PUSHF instruction is used to store a word of data
in the “stack.”

False. The XCHG instruction “swaps” the contents of the source
and destination operands. The XLAT instruction replaces a byte
in the AL register with a byte from a 256-byte code table whose
address is contained in the BX register.

If you wish to update SF, ZF, AF, and CF to known values, you
should use the flag transfer instruction SAHF.

The LEA instruction is used to move the effective address of a
variable name into a 16-bit general register.

If the decimal equivalent of the unsigned binary number is 25,
the signed binary number is +25. Since the sign of the number
is positive, the number is not complemented; hence the signed
and unsigned values are the same.

If the decimal equivalent of the 8-bit unsigned binary number
is 153, the signed binary number is —103. Because the unsigned
binary number has a one in its high-order bit, you must take
its 2’s complement to determine the signed value.

If the unsigned binary number is 8, the unpacked decimal number
is 8. Because the unsigned binary number is less than 0AH, it
has the same value as the unpacked decimal.

If the unsigned binary number is 103, the packed decimal number
is 67. Here, you must break the unsigned binary number into
two groups of four bits:

103 = 01100111

Since each group has a value less than 0AH, you can convert
each one to its BCD equivalent. Had the lower four bits been
greater than 9, you would have to add 6 to that value and then
add one to the upper 4-bit value. Carrying the process one step
further, if the upper 4-bit value is now greater than 9, then you
would have to add 6 to these four bits and then set the Carry
flag. Setting CF would indicate you have the value one in the
100’s digit.

6'84 UNIT SiX

10.

11.

12.

13.

14.

15.

16.

17

18.

19.

20.

21.

22,

23.

The largest negative decimal number that can be represented in
eight binary bits is —128.

The instruction for adding signed binary words between registers
is ADD.

After you add two unpacked decimal numbers, you must adjust
the result with the AAA instruction.

For a decimal adjust operation, the operand must reside in the
AL register.

In unpacked decimal adjusts, the 10’s digit is stored in the AH
register; while in packed decimal adjusts, the 100’s digit is stored
in the Carry flag.

The ADC instruction lets you add multiword (or byte) unsigned
binary numbers.

The instruction for subtracting binary words between registers
is SUB.

True. The AAS instruction provides the necessary adjustment
to allow you to subtract one ASCII number code from another.

The SBB instruction lets you subtract more than one multibyte
operand from another.

False. While the compare instruction does subtract the source
operand from the destination operand, it does not store the result
in the destination operand. Rather, it is used to update the condi-
tion code flags without changing the destination operand.

True. Negating a number produces its 2’s complement.

The instruction for multiplying two unsigned binary words is
MUL.

The instruction for multiplying two signed binary bytes is IMUL.

If you multiply one word times another, the answer is stored
in the DX and AX registers.

Another term for signed number is integer.

Expanding the Instruction Set 6'85

24.

25.

26.

27,

28.

29.

30.

31.

32.

33.

34.

35.

36.

37,

38.

39.

If you multiply the byte 2 times the byte —5, the number stored
in the AH register is FFH.

False. The AAM instruction will only adjust the product of two
valid BCD numbers.

If you divide a doubleword value by a word value, the dividend
must reside in the DX and AX registers.

The quotient from a byte divide is stored in the AL register.

False. If the quotient from a word divide exceeds the capacity
of the AX register, a type 0 interrupt will occur and the contents
of the AX and DX registers will be undefined.

The mnemonic for an integer divide word is IDIV.

The maximum negative remainder after an integer divide byte
operation is —128.

The CBW instruction is used to extend the sign of a byte-sized
number before the divide operation.

You would use the CWD instruction to convert a word to a dou-
bleword.

True. The AAD instruction is performed prior to the division
of two unpacked decimal numbers.

False. The TEST instruction uses a logical AND process to update
the condition code flags.

After a “logical” operation, the Auxiliary Carry flag is undefined.

False. The NOT operation forms the 1’s complement of the desti-
nation operand.

The shift operation lets you shift up to 255 bits out of the destina-
tion operand.

The CL register is used to hold the shift “count.”

The SAR instruction preserves the original sign of the operand
during a shift operation.

6"86 UNIT SIX

40.

41.

True. All of the rotate instructions save the value of the last bit
rotated out of the operand in the Carry flag.

If the AL register contains OFH, CF is set, and OF is cleared.
Then the AL register will contain 1EH after the instruction

ROL AL,1

is executed. The Carry flag value is not rotated into the destina-
tion operand in a ROL instruction. This will only happen in a
RCL instruction.

LAASNI

	Macro_86_Assembly_Lamguage_Vol_1_Page_001
	Macro_86_Assembly_Lamguage_Vol_1_Page_002
	Macro_86_Assembly_Lamguage_Vol_1_Page_003
	Macro_86_Assembly_Lamguage_Vol_1_Page_005
	Macro_86_Assembly_Lamguage_Vol_1_Page_007
	Macro_86_Assembly_Lamguage_Vol_1_Page_008
	Macro_86_Assembly_Lamguage_Vol_1_Page_009
	Macro_86_Assembly_Lamguage_Vol_1_Page_010
	Macro_86_Assembly_Lamguage_Vol_1_Page_011
	Macro_86_Assembly_Lamguage_Vol_1_Page_012
	Macro_86_Assembly_Lamguage_Vol_1_Page_013
	Macro_86_Assembly_Lamguage_Vol_1_Page_014
	Macro_86_Assembly_Lamguage_Vol_1_Page_015
	Macro_86_Assembly_Lamguage_Vol_1_Page_016
	Macro_86_Assembly_Lamguage_Vol_1_Page_017
	Macro_86_Assembly_Lamguage_Vol_1_Page_018
	Macro_86_Assembly_Lamguage_Vol_1_Page_019
	Macro_86_Assembly_Lamguage_Vol_1_Page_020
	Macro_86_Assembly_Lamguage_Vol_1_Page_021
	Macro_86_Assembly_Lamguage_Vol_1_Page_022
	Macro_86_Assembly_Lamguage_Vol_1_Page_023
	Macro_86_Assembly_Lamguage_Vol_1_Page_024
	Macro_86_Assembly_Lamguage_Vol_1_Page_025
	Macro_86_Assembly_Lamguage_Vol_1_Page_026
	Macro_86_Assembly_Lamguage_Vol_1_Page_027
	Macro_86_Assembly_Lamguage_Vol_1_Page_028
	Macro_86_Assembly_Lamguage_Vol_1_Page_029
	Macro_86_Assembly_Lamguage_Vol_1_Page_030
	Macro_86_Assembly_Lamguage_Vol_1_Page_031
	Macro_86_Assembly_Lamguage_Vol_1_Page_032
	Macro_86_Assembly_Lamguage_Vol_1_Page_033
	Macro_86_Assembly_Lamguage_Vol_1_Page_034
	Macro_86_Assembly_Lamguage_Vol_1_Page_035
	Macro_86_Assembly_Lamguage_Vol_1_Page_036
	Macro_86_Assembly_Lamguage_Vol_1_Page_037
	Macro_86_Assembly_Lamguage_Vol_1_Page_038
	Macro_86_Assembly_Lamguage_Vol_1_Page_039
	Macro_86_Assembly_Lamguage_Vol_1_Page_040
	Macro_86_Assembly_Lamguage_Vol_1_Page_041
	Macro_86_Assembly_Lamguage_Vol_1_Page_042
	Macro_86_Assembly_Lamguage_Vol_1_Page_043
	Macro_86_Assembly_Lamguage_Vol_1_Page_044
	Macro_86_Assembly_Lamguage_Vol_1_Page_045
	Macro_86_Assembly_Lamguage_Vol_1_Page_046
	Macro_86_Assembly_Lamguage_Vol_1_Page_047
	Macro_86_Assembly_Lamguage_Vol_1_Page_048
	Macro_86_Assembly_Lamguage_Vol_1_Page_049
	Macro_86_Assembly_Lamguage_Vol_1_Page_050
	Macro_86_Assembly_Lamguage_Vol_1_Page_051
	Macro_86_Assembly_Lamguage_Vol_1_Page_052
	Macro_86_Assembly_Lamguage_Vol_1_Page_053
	Macro_86_Assembly_Lamguage_Vol_1_Page_054
	Macro_86_Assembly_Lamguage_Vol_1_Page_055
	Macro_86_Assembly_Lamguage_Vol_1_Page_056
	Macro_86_Assembly_Lamguage_Vol_1_Page_057
	Macro_86_Assembly_Lamguage_Vol_1_Page_058
	Macro_86_Assembly_Lamguage_Vol_1_Page_059
	Macro_86_Assembly_Lamguage_Vol_1_Page_060
	Macro_86_Assembly_Lamguage_Vol_1_Page_061
	Macro_86_Assembly_Lamguage_Vol_1_Page_062
	Macro_86_Assembly_Lamguage_Vol_1_Page_063
	Macro_86_Assembly_Lamguage_Vol_1_Page_064
	Macro_86_Assembly_Lamguage_Vol_1_Page_065
	Macro_86_Assembly_Lamguage_Vol_1_Page_066
	Macro_86_Assembly_Lamguage_Vol_1_Page_067
	Macro_86_Assembly_Lamguage_Vol_1_Page_068
	Macro_86_Assembly_Lamguage_Vol_1_Page_069
	Macro_86_Assembly_Lamguage_Vol_1_Page_070
	Macro_86_Assembly_Lamguage_Vol_1_Page_071
	Macro_86_Assembly_Lamguage_Vol_1_Page_072
	Macro_86_Assembly_Lamguage_Vol_1_Page_073
	Macro_86_Assembly_Lamguage_Vol_1_Page_074
	Macro_86_Assembly_Lamguage_Vol_1_Page_075
	Macro_86_Assembly_Lamguage_Vol_1_Page_076
	Macro_86_Assembly_Lamguage_Vol_1_Page_077
	Macro_86_Assembly_Lamguage_Vol_1_Page_078
	Macro_86_Assembly_Lamguage_Vol_1_Page_079
	Macro_86_Assembly_Lamguage_Vol_1_Page_080
	Macro_86_Assembly_Lamguage_Vol_1_Page_081
	Macro_86_Assembly_Lamguage_Vol_1_Page_082
	Macro_86_Assembly_Lamguage_Vol_1_Page_083
	Macro_86_Assembly_Lamguage_Vol_1_Page_084
	Macro_86_Assembly_Lamguage_Vol_1_Page_085
	Macro_86_Assembly_Lamguage_Vol_1_Page_086
	Macro_86_Assembly_Lamguage_Vol_1_Page_087
	Macro_86_Assembly_Lamguage_Vol_1_Page_088
	Macro_86_Assembly_Lamguage_Vol_1_Page_089
	Macro_86_Assembly_Lamguage_Vol_1_Page_090
	Macro_86_Assembly_Lamguage_Vol_1_Page_091
	Macro_86_Assembly_Lamguage_Vol_1_Page_092
	Macro_86_Assembly_Lamguage_Vol_1_Page_093
	Macro_86_Assembly_Lamguage_Vol_1_Page_094
	Macro_86_Assembly_Lamguage_Vol_1_Page_095
	Macro_86_Assembly_Lamguage_Vol_1_Page_096
	Macro_86_Assembly_Lamguage_Vol_1_Page_097
	Macro_86_Assembly_Lamguage_Vol_1_Page_098
	Macro_86_Assembly_Lamguage_Vol_1_Page_099
	Macro_86_Assembly_Lamguage_Vol_1_Page_100
	Macro_86_Assembly_Lamguage_Vol_1_Page_101
	Macro_86_Assembly_Lamguage_Vol_1_Page_102
	Macro_86_Assembly_Lamguage_Vol_1_Page_103
	Macro_86_Assembly_Lamguage_Vol_1_Page_104
	Macro_86_Assembly_Lamguage_Vol_1_Page_105
	Macro_86_Assembly_Lamguage_Vol_1_Page_106
	Macro_86_Assembly_Lamguage_Vol_1_Page_107
	Macro_86_Assembly_Lamguage_Vol_1_Page_108
	Macro_86_Assembly_Lamguage_Vol_1_Page_109
	Macro_86_Assembly_Lamguage_Vol_1_Page_110
	Macro_86_Assembly_Lamguage_Vol_1_Page_111
	Macro_86_Assembly_Lamguage_Vol_1_Page_112
	Macro_86_Assembly_Lamguage_Vol_1_Page_113
	Macro_86_Assembly_Lamguage_Vol_1_Page_114
	Macro_86_Assembly_Lamguage_Vol_1_Page_115
	Macro_86_Assembly_Lamguage_Vol_1_Page_116
	Macro_86_Assembly_Lamguage_Vol_1_Page_117
	Macro_86_Assembly_Lamguage_Vol_1_Page_118
	Macro_86_Assembly_Lamguage_Vol_1_Page_119
	Macro_86_Assembly_Lamguage_Vol_1_Page_120
	Macro_86_Assembly_Lamguage_Vol_1_Page_121
	Macro_86_Assembly_Lamguage_Vol_1_Page_122
	Macro_86_Assembly_Lamguage_Vol_1_Page_123
	Macro_86_Assembly_Lamguage_Vol_1_Page_124
	Macro_86_Assembly_Lamguage_Vol_1_Page_125
	Macro_86_Assembly_Lamguage_Vol_1_Page_126
	Macro_86_Assembly_Lamguage_Vol_1_Page_127
	Macro_86_Assembly_Lamguage_Vol_1_Page_128
	Macro_86_Assembly_Lamguage_Vol_1_Page_129
	Macro_86_Assembly_Lamguage_Vol_1_Page_130
	Macro_86_Assembly_Lamguage_Vol_1_Page_131
	Macro_86_Assembly_Lamguage_Vol_1_Page_132
	Macro_86_Assembly_Lamguage_Vol_1_Page_133
	Macro_86_Assembly_Lamguage_Vol_1_Page_134
	Macro_86_Assembly_Lamguage_Vol_1_Page_135
	Macro_86_Assembly_Lamguage_Vol_1_Page_136
	Macro_86_Assembly_Lamguage_Vol_1_Page_137
	Macro_86_Assembly_Lamguage_Vol_1_Page_138
	Macro_86_Assembly_Lamguage_Vol_1_Page_139
	Macro_86_Assembly_Lamguage_Vol_1_Page_140
	Macro_86_Assembly_Lamguage_Vol_1_Page_141
	Macro_86_Assembly_Lamguage_Vol_1_Page_142
	Macro_86_Assembly_Lamguage_Vol_1_Page_143
	Macro_86_Assembly_Lamguage_Vol_1_Page_144
	Macro_86_Assembly_Lamguage_Vol_1_Page_145
	Macro_86_Assembly_Lamguage_Vol_1_Page_146
	Macro_86_Assembly_Lamguage_Vol_1_Page_147
	Macro_86_Assembly_Lamguage_Vol_1_Page_148
	Macro_86_Assembly_Lamguage_Vol_1_Page_149
	Macro_86_Assembly_Lamguage_Vol_1_Page_150
	Macro_86_Assembly_Lamguage_Vol_1_Page_151
	Macro_86_Assembly_Lamguage_Vol_1_Page_152
	Macro_86_Assembly_Lamguage_Vol_1_Page_153
	Macro_86_Assembly_Lamguage_Vol_1_Page_154
	Macro_86_Assembly_Lamguage_Vol_1_Page_155
	Macro_86_Assembly_Lamguage_Vol_1_Page_156
	Macro_86_Assembly_Lamguage_Vol_1_Page_157
	Macro_86_Assembly_Lamguage_Vol_1_Page_158
	Macro_86_Assembly_Lamguage_Vol_1_Page_159
	Macro_86_Assembly_Lamguage_Vol_1_Page_160
	Macro_86_Assembly_Lamguage_Vol_1_Page_161
	Macro_86_Assembly_Lamguage_Vol_1_Page_162
	Macro_86_Assembly_Lamguage_Vol_1_Page_163
	Macro_86_Assembly_Lamguage_Vol_1_Page_164
	Macro_86_Assembly_Lamguage_Vol_1_Page_165
	Macro_86_Assembly_Lamguage_Vol_1_Page_166
	Macro_86_Assembly_Lamguage_Vol_1_Page_167
	Macro_86_Assembly_Lamguage_Vol_1_Page_168
	Macro_86_Assembly_Lamguage_Vol_1_Page_169
	Macro_86_Assembly_Lamguage_Vol_1_Page_170
	Macro_86_Assembly_Lamguage_Vol_1_Page_171
	Macro_86_Assembly_Lamguage_Vol_1_Page_172
	Macro_86_Assembly_Lamguage_Vol_1_Page_173
	Macro_86_Assembly_Lamguage_Vol_1_Page_174
	Macro_86_Assembly_Lamguage_Vol_1_Page_175
	Macro_86_Assembly_Lamguage_Vol_1_Page_176
	Macro_86_Assembly_Lamguage_Vol_1_Page_177
	Macro_86_Assembly_Lamguage_Vol_1_Page_178
	Macro_86_Assembly_Lamguage_Vol_1_Page_179
	Macro_86_Assembly_Lamguage_Vol_1_Page_180
	Macro_86_Assembly_Lamguage_Vol_1_Page_181
	Macro_86_Assembly_Lamguage_Vol_1_Page_182
	Macro_86_Assembly_Lamguage_Vol_1_Page_183
	Macro_86_Assembly_Lamguage_Vol_1_Page_184
	Macro_86_Assembly_Lamguage_Vol_1_Page_185
	Macro_86_Assembly_Lamguage_Vol_1_Page_186
	Macro_86_Assembly_Lamguage_Vol_1_Page_187
	Macro_86_Assembly_Lamguage_Vol_1_Page_188
	Macro_86_Assembly_Lamguage_Vol_1_Page_189
	Macro_86_Assembly_Lamguage_Vol_1_Page_190
	Macro_86_Assembly_Lamguage_Vol_1_Page_191
	Macro_86_Assembly_Lamguage_Vol_1_Page_192
	Macro_86_Assembly_Lamguage_Vol_1_Page_193
	Macro_86_Assembly_Lamguage_Vol_1_Page_194
	Macro_86_Assembly_Lamguage_Vol_1_Page_195
	Macro_86_Assembly_Lamguage_Vol_1_Page_196
	Macro_86_Assembly_Lamguage_Vol_1_Page_197
	Macro_86_Assembly_Lamguage_Vol_1_Page_198
	Macro_86_Assembly_Lamguage_Vol_1_Page_199
	Macro_86_Assembly_Lamguage_Vol_1_Page_200
	Macro_86_Assembly_Lamguage_Vol_1_Page_201
	Macro_86_Assembly_Lamguage_Vol_1_Page_202
	Macro_86_Assembly_Lamguage_Vol_1_Page_203
	Macro_86_Assembly_Lamguage_Vol_1_Page_204
	Macro_86_Assembly_Lamguage_Vol_1_Page_205
	Macro_86_Assembly_Lamguage_Vol_1_Page_206
	Macro_86_Assembly_Lamguage_Vol_1_Page_207
	Macro_86_Assembly_Lamguage_Vol_1_Page_208
	Macro_86_Assembly_Lamguage_Vol_1_Page_209
	Macro_86_Assembly_Lamguage_Vol_1_Page_210
	Macro_86_Assembly_Lamguage_Vol_1_Page_211
	Macro_86_Assembly_Lamguage_Vol_1_Page_212
	Macro_86_Assembly_Lamguage_Vol_1_Page_213
	Macro_86_Assembly_Lamguage_Vol_1_Page_214
	Macro_86_Assembly_Lamguage_Vol_1_Page_215
	Macro_86_Assembly_Lamguage_Vol_1_Page_216
	Macro_86_Assembly_Lamguage_Vol_1_Page_217
	Macro_86_Assembly_Lamguage_Vol_1_Page_218
	Macro_86_Assembly_Lamguage_Vol_1_Page_219
	Macro_86_Assembly_Lamguage_Vol_1_Page_220
	Macro_86_Assembly_Lamguage_Vol_1_Page_221
	Macro_86_Assembly_Lamguage_Vol_1_Page_222
	Macro_86_Assembly_Lamguage_Vol_1_Page_223
	Macro_86_Assembly_Lamguage_Vol_1_Page_224
	Macro_86_Assembly_Lamguage_Vol_1_Page_225
	Macro_86_Assembly_Lamguage_Vol_1_Page_226
	Macro_86_Assembly_Lamguage_Vol_1_Page_227
	Macro_86_Assembly_Lamguage_Vol_1_Page_228
	Macro_86_Assembly_Lamguage_Vol_1_Page_229
	Macro_86_Assembly_Lamguage_Vol_1_Page_230
	Macro_86_Assembly_Lamguage_Vol_1_Page_231
	Macro_86_Assembly_Lamguage_Vol_1_Page_232
	Macro_86_Assembly_Lamguage_Vol_1_Page_233
	Macro_86_Assembly_Lamguage_Vol_1_Page_234
	Macro_86_Assembly_Lamguage_Vol_1_Page_235
	Macro_86_Assembly_Lamguage_Vol_1_Page_236
	Macro_86_Assembly_Lamguage_Vol_1_Page_237
	Macro_86_Assembly_Lamguage_Vol_1_Page_238
	Macro_86_Assembly_Lamguage_Vol_1_Page_239
	Macro_86_Assembly_Lamguage_Vol_1_Page_240
	Macro_86_Assembly_Lamguage_Vol_1_Page_241
	Macro_86_Assembly_Lamguage_Vol_1_Page_242
	Macro_86_Assembly_Lamguage_Vol_1_Page_243
	Macro_86_Assembly_Lamguage_Vol_1_Page_244
	Macro_86_Assembly_Lamguage_Vol_1_Page_245
	Macro_86_Assembly_Lamguage_Vol_1_Page_246
	Macro_86_Assembly_Lamguage_Vol_1_Page_247
	Macro_86_Assembly_Lamguage_Vol_1_Page_248
	Macro_86_Assembly_Lamguage_Vol_1_Page_249
	Macro_86_Assembly_Lamguage_Vol_1_Page_250
	Macro_86_Assembly_Lamguage_Vol_1_Page_251
	Macro_86_Assembly_Lamguage_Vol_1_Page_252
	Macro_86_Assembly_Lamguage_Vol_1_Page_253
	Macro_86_Assembly_Lamguage_Vol_1_Page_254
	Macro_86_Assembly_Lamguage_Vol_1_Page_255
	Macro_86_Assembly_Lamguage_Vol_1_Page_256
	Macro_86_Assembly_Lamguage_Vol_1_Page_257
	Macro_86_Assembly_Lamguage_Vol_1_Page_258
	Macro_86_Assembly_Lamguage_Vol_1_Page_259
	Macro_86_Assembly_Lamguage_Vol_1_Page_260
	Macro_86_Assembly_Lamguage_Vol_1_Page_261
	Macro_86_Assembly_Lamguage_Vol_1_Page_262
	Macro_86_Assembly_Lamguage_Vol_1_Page_263
	Macro_86_Assembly_Lamguage_Vol_1_Page_264
	Macro_86_Assembly_Lamguage_Vol_1_Page_265
	Macro_86_Assembly_Lamguage_Vol_1_Page_266
	Macro_86_Assembly_Lamguage_Vol_1_Page_267
	Macro_86_Assembly_Lamguage_Vol_1_Page_268
	Macro_86_Assembly_Lamguage_Vol_1_Page_269
	Macro_86_Assembly_Lamguage_Vol_1_Page_270
	Macro_86_Assembly_Lamguage_Vol_1_Page_271
	Macro_86_Assembly_Lamguage_Vol_1_Page_272
	Macro_86_Assembly_Lamguage_Vol_1_Page_273
	Macro_86_Assembly_Lamguage_Vol_1_Page_274
	Macro_86_Assembly_Lamguage_Vol_1_Page_275
	Macro_86_Assembly_Lamguage_Vol_1_Page_276
	Macro_86_Assembly_Lamguage_Vol_1_Page_277
	Macro_86_Assembly_Lamguage_Vol_1_Page_278
	Macro_86_Assembly_Lamguage_Vol_1_Page_279
	Macro_86_Assembly_Lamguage_Vol_1_Page_280
	Macro_86_Assembly_Lamguage_Vol_1_Page_281
	Macro_86_Assembly_Lamguage_Vol_1_Page_282
	Macro_86_Assembly_Lamguage_Vol_1_Page_283
	Macro_86_Assembly_Lamguage_Vol_1_Page_284
	Macro_86_Assembly_Lamguage_Vol_1_Page_285
	Macro_86_Assembly_Lamguage_Vol_1_Page_286
	Macro_86_Assembly_Lamguage_Vol_1_Page_287
	Macro_86_Assembly_Lamguage_Vol_1_Page_288
	Macro_86_Assembly_Lamguage_Vol_1_Page_289
	Macro_86_Assembly_Lamguage_Vol_1_Page_290
	Macro_86_Assembly_Lamguage_Vol_1_Page_291
	Macro_86_Assembly_Lamguage_Vol_1_Page_292
	Macro_86_Assembly_Lamguage_Vol_1_Page_293
	Macro_86_Assembly_Lamguage_Vol_1_Page_294
	Macro_86_Assembly_Lamguage_Vol_1_Page_295
	Macro_86_Assembly_Lamguage_Vol_1_Page_296
	Macro_86_Assembly_Lamguage_Vol_1_Page_297
	Macro_86_Assembly_Lamguage_Vol_1_Page_298
	Macro_86_Assembly_Lamguage_Vol_1_Page_299
	Macro_86_Assembly_Lamguage_Vol_1_Page_300
	Macro_86_Assembly_Lamguage_Vol_1_Page_301
	Macro_86_Assembly_Lamguage_Vol_1_Page_302
	Macro_86_Assembly_Lamguage_Vol_1_Page_303
	Macro_86_Assembly_Lamguage_Vol_1_Page_304
	Macro_86_Assembly_Lamguage_Vol_1_Page_305
	Macro_86_Assembly_Lamguage_Vol_1_Page_306
	Macro_86_Assembly_Lamguage_Vol_1_Page_307
	Macro_86_Assembly_Lamguage_Vol_1_Page_308
	Macro_86_Assembly_Lamguage_Vol_1_Page_309
	Macro_86_Assembly_Lamguage_Vol_1_Page_310
	Macro_86_Assembly_Lamguage_Vol_1_Page_311
	Macro_86_Assembly_Lamguage_Vol_1_Page_312
	Macro_86_Assembly_Lamguage_Vol_1_Page_313
	Macro_86_Assembly_Lamguage_Vol_1_Page_314
	Macro_86_Assembly_Lamguage_Vol_1_Page_315
	Macro_86_Assembly_Lamguage_Vol_1_Page_316
	Macro_86_Assembly_Lamguage_Vol_1_Page_317
	Macro_86_Assembly_Lamguage_Vol_1_Page_318
	Macro_86_Assembly_Lamguage_Vol_1_Page_319
	Macro_86_Assembly_Lamguage_Vol_1_Page_320
	Macro_86_Assembly_Lamguage_Vol_1_Page_321
	Macro_86_Assembly_Lamguage_Vol_1_Page_322
	Macro_86_Assembly_Lamguage_Vol_1_Page_323
	Macro_86_Assembly_Lamguage_Vol_1_Page_324
	Macro_86_Assembly_Lamguage_Vol_1_Page_325
	Macro_86_Assembly_Lamguage_Vol_1_Page_326
	Macro_86_Assembly_Lamguage_Vol_1_Page_327
	Macro_86_Assembly_Lamguage_Vol_1_Page_328
	Macro_86_Assembly_Lamguage_Vol_1_Page_329
	Macro_86_Assembly_Lamguage_Vol_1_Page_330
	Macro_86_Assembly_Lamguage_Vol_1_Page_331
	Macro_86_Assembly_Lamguage_Vol_1_Page_332
	Macro_86_Assembly_Lamguage_Vol_1_Page_333
	Macro_86_Assembly_Lamguage_Vol_1_Page_334
	Macro_86_Assembly_Lamguage_Vol_1_Page_335
	Macro_86_Assembly_Lamguage_Vol_1_Page_336
	Macro_86_Assembly_Lamguage_Vol_1_Page_337
	Macro_86_Assembly_Lamguage_Vol_1_Page_338
	Macro_86_Assembly_Lamguage_Vol_1_Page_339
	Macro_86_Assembly_Lamguage_Vol_1_Page_340
	Macro_86_Assembly_Lamguage_Vol_1_Page_341
	Macro_86_Assembly_Lamguage_Vol_1_Page_342
	Macro_86_Assembly_Lamguage_Vol_1_Page_343
	Macro_86_Assembly_Lamguage_Vol_1_Page_344
	Macro_86_Assembly_Lamguage_Vol_1_Page_345
	Macro_86_Assembly_Lamguage_Vol_1_Page_346
	Macro_86_Assembly_Lamguage_Vol_1_Page_347
	Macro_86_Assembly_Lamguage_Vol_1_Page_348
	Macro_86_Assembly_Lamguage_Vol_1_Page_349
	Macro_86_Assembly_Lamguage_Vol_1_Page_350
	Macro_86_Assembly_Lamguage_Vol_1_Page_351
	Macro_86_Assembly_Lamguage_Vol_1_Page_352
	Macro_86_Assembly_Lamguage_Vol_1_Page_353
	Macro_86_Assembly_Lamguage_Vol_1_Page_354
	Macro_86_Assembly_Lamguage_Vol_1_Page_355
	Macro_86_Assembly_Lamguage_Vol_1_Page_356
	Macro_86_Assembly_Lamguage_Vol_1_Page_357
	Macro_86_Assembly_Lamguage_Vol_1_Page_358
	Macro_86_Assembly_Lamguage_Vol_1_Page_359
	Macro_86_Assembly_Lamguage_Vol_1_Page_360
	Macro_86_Assembly_Lamguage_Vol_1_Page_361
	Macro_86_Assembly_Lamguage_Vol_1_Page_362
	Macro_86_Assembly_Lamguage_Vol_1_Page_363
	Macro_86_Assembly_Lamguage_Vol_1_Page_364
	Macro_86_Assembly_Lamguage_Vol_1_Page_365
	Macro_86_Assembly_Lamguage_Vol_1_Page_366
	Macro_86_Assembly_Lamguage_Vol_1_Page_367
	Macro_86_Assembly_Lamguage_Vol_1_Page_368
	Macro_86_Assembly_Lamguage_Vol_1_Page_369
	Macro_86_Assembly_Lamguage_Vol_1_Page_370
	Macro_86_Assembly_Lamguage_Vol_1_Page_371
	Macro_86_Assembly_Lamguage_Vol_1_Page_372
	Macro_86_Assembly_Lamguage_Vol_1_Page_373
	Macro_86_Assembly_Lamguage_Vol_1_Page_374
	Macro_86_Assembly_Lamguage_Vol_1_Page_375
	Macro_86_Assembly_Lamguage_Vol_1_Page_376
	Macro_86_Assembly_Lamguage_Vol_1_Page_377
	Macro_86_Assembly_Lamguage_Vol_1_Page_378
	Macro_86_Assembly_Lamguage_Vol_1_Page_379
	Macro_86_Assembly_Lamguage_Vol_1_Page_380
	Macro_86_Assembly_Lamguage_Vol_1_Page_381
	Macro_86_Assembly_Lamguage_Vol_1_Page_382
	Macro_86_Assembly_Lamguage_Vol_1_Page_383
	Macro_86_Assembly_Lamguage_Vol_1_Page_384
	Macro_86_Assembly_Lamguage_Vol_1_Page_385
	Macro_86_Assembly_Lamguage_Vol_1_Page_386
	Macro_86_Assembly_Lamguage_Vol_1_Page_387
	Macro_86_Assembly_Lamguage_Vol_1_Page_388
	Macro_86_Assembly_Lamguage_Vol_1_Page_389
	Macro_86_Assembly_Lamguage_Vol_1_Page_390
	Macro_86_Assembly_Lamguage_Vol_1_Page_391
	Macro_86_Assembly_Lamguage_Vol_1_Page_392
	Macro_86_Assembly_Lamguage_Vol_1_Page_393
	Macro_86_Assembly_Lamguage_Vol_1_Page_394
	Macro_86_Assembly_Lamguage_Vol_1_Page_395
	Macro_86_Assembly_Lamguage_Vol_1_Page_396
	Macro_86_Assembly_Lamguage_Vol_1_Page_397
	Macro_86_Assembly_Lamguage_Vol_1_Page_398
	Macro_86_Assembly_Lamguage_Vol_1_Page_399
	Macro_86_Assembly_Lamguage_Vol_1_Page_400
	Macro_86_Assembly_Lamguage_Vol_1_Page_401
	Macro_86_Assembly_Lamguage_Vol_1_Page_402
	Macro_86_Assembly_Lamguage_Vol_1_Page_403
	Macro_86_Assembly_Lamguage_Vol_1_Page_404
	Macro_86_Assembly_Lamguage_Vol_1_Page_405
	Macro_86_Assembly_Lamguage_Vol_1_Page_406
	Macro_86_Assembly_Lamguage_Vol_1_Page_407
	Macro_86_Assembly_Lamguage_Vol_1_Page_408
	Macro_86_Assembly_Lamguage_Vol_1_Page_409
	Macro_86_Assembly_Lamguage_Vol_1_Page_410
	Macro_86_Assembly_Lamguage_Vol_1_Page_411
	Macro_86_Assembly_Lamguage_Vol_1_Page_412
	Macro_86_Assembly_Lamguage_Vol_1_Page_413
	Macro_86_Assembly_Lamguage_Vol_1_Page_414
	Macro_86_Assembly_Lamguage_Vol_1_Page_415
	Macro_86_Assembly_Lamguage_Vol_1_Page_416
	Macro_86_Assembly_Lamguage_Vol_1_Page_417
	Macro_86_Assembly_Lamguage_Vol_1_Page_418
	Macro_86_Assembly_Lamguage_Vol_1_Page_419
	Macro_86_Assembly_Lamguage_Vol_1_Page_420
	Macro_86_Assembly_Lamguage_Vol_1_Page_421
	Macro_86_Assembly_Lamguage_Vol_1_Page_422
	Macro_86_Assembly_Lamguage_Vol_1_Page_423
	Macro_86_Assembly_Lamguage_Vol_1_Page_424
	Macro_86_Assembly_Lamguage_Vol_1_Page_425
	Macro_86_Assembly_Lamguage_Vol_1_Page_426
	Macro_86_Assembly_Lamguage_Vol_1_Page_427
	Macro_86_Assembly_Lamguage_Vol_1_Page_428
	Macro_86_Assembly_Lamguage_Vol_1_Page_429
	Macro_86_Assembly_Lamguage_Vol_1_Page_430
	Macro_86_Assembly_Lamguage_Vol_1_Page_431
	Macro_86_Assembly_Lamguage_Vol_1_Page_432
	Macro_86_Assembly_Lamguage_Vol_1_Page_433
	Macro_86_Assembly_Lamguage_Vol_1_Page_434
	Macro_86_Assembly_Lamguage_Vol_1_Page_435
	Macro_86_Assembly_Lamguage_Vol_1_Page_436
	Macro_86_Assembly_Lamguage_Vol_1_Page_437
	Macro_86_Assembly_Lamguage_Vol_1_Page_438
	Macro_86_Assembly_Lamguage_Vol_1_Page_439
	Macro_86_Assembly_Lamguage_Vol_1_Page_440
	Macro_86_Assembly_Lamguage_Vol_1_Page_441
	Macro_86_Assembly_Lamguage_Vol_1_Page_442
	Macro_86_Assembly_Lamguage_Vol_1_Page_443
	Macro_86_Assembly_Lamguage_Vol_1_Page_444
	Macro_86_Assembly_Lamguage_Vol_1_Page_445
	Macro_86_Assembly_Lamguage_Vol_1_Page_446
	Macro_86_Assembly_Lamguage_Vol_1_Page_447
	Macro_86_Assembly_Lamguage_Vol_1_Page_448
	Macro_86_Assembly_Lamguage_Vol_1_Page_449
	Macro_86_Assembly_Lamguage_Vol_1_Page_450
	Macro_86_Assembly_Lamguage_Vol_1_Page_451
	Macro_86_Assembly_Lamguage_Vol_1_Page_452
	Macro_86_Assembly_Lamguage_Vol_1_Page_453
	Macro_86_Assembly_Lamguage_Vol_1_Page_454
	Macro_86_Assembly_Lamguage_Vol_1_Page_455
	Macro_86_Assembly_Lamguage_Vol_1_Page_456
	Macro_86_Assembly_Lamguage_Vol_1_Page_457
	Macro_86_Assembly_Lamguage_Vol_1_Page_458
	Macro_86_Assembly_Lamguage_Vol_1_Page_459
	Macro_86_Assembly_Lamguage_Vol_1_Page_460
	Macro_86_Assembly_Lamguage_Vol_1_Page_461
	Macro_86_Assembly_Lamguage_Vol_1_Page_462
	Macro_86_Assembly_Lamguage_Vol_1_Page_463
	Macro_86_Assembly_Lamguage_Vol_1_Page_464
	Macro_86_Assembly_Lamguage_Vol_1_Page_465
	Macro_86_Assembly_Lamguage_Vol_1_Page_466
	Macro_86_Assembly_Lamguage_Vol_1_Page_467
	Macro_86_Assembly_Lamguage_Vol_1_Page_468
	Macro_86_Assembly_Lamguage_Vol_1_Page_469
	Macro_86_Assembly_Lamguage_Vol_1_Page_470
	Macro_86_Assembly_Lamguage_Vol_1_Page_471
	Macro_86_Assembly_Lamguage_Vol_1_Page_472
	Macro_86_Assembly_Lamguage_Vol_1_Page_473
	Macro_86_Assembly_Lamguage_Vol_1_Page_474
	Macro_86_Assembly_Lamguage_Vol_1_Page_475
	Macro_86_Assembly_Lamguage_Vol_1_Page_476
	Macro_86_Assembly_Lamguage_Vol_1_Page_477
	Macro_86_Assembly_Lamguage_Vol_1_Page_478
	Macro_86_Assembly_Lamguage_Vol_1_Page_479
	Macro_86_Assembly_Lamguage_Vol_1_Page_480
	Macro_86_Assembly_Lamguage_Vol_1_Page_481
	Macro_86_Assembly_Lamguage_Vol_1_Page_482
	Macro_86_Assembly_Lamguage_Vol_1_Page_483
	Macro_86_Assembly_Lamguage_Vol_1_Page_484

